Effect of hypophysectomy on cyclic 3′,5′-nucleotide-metabolizing enzymes in the rat thyroid gland

in Journal of Endocrinology
Restricted access

ABSTRACT

Adenylate cyclase and cyclic AMP phosphodiesterase activities in the thyroid gland were significantly reduced after hypophysectomy, followed by a gradual restoration of the enzyme activities to the levels seen in sham-operated rats whereas a slight and persistent reduction was evident in guanylate cyclase and cyclic GMP phosphodiesterase activities in the same tissue. These changes in enzyme activities were restored by TSH administration but not by ACTH. The recovery of activity produced by TSH administration was inhibited by cycloheximide. Hypophysectomy, or TSH and cycloheximide administration, did not produce any significant changes in the concentrations of calmodulin, suggesting that the alteration of these enzyme activities is not induced by a decrease in the concentration of calmodulin. Since forskolin activation of adenylate cyclase did not restore the reduced activity in the hypophysectomized rat thyroid to the level found in the sham-operated control rat thyroid, we conclude that there is a reduction of the amount of enzyme after hypophysectomy rather than a change of the active site on adenylate cyclase. The spontaneous restoration of adenylate cyclase and cyclic AMP phosphodiesterase activities after hypophysectomy implies that cyclic AMP-metabolizing enzymes are responsive to an autoregulatory mechanism in thyroid follicular cells.

J. Endocr. (1985) 105, 363–369