Vitamin D metabolites regulate osteocalcin synthesis and proliferation of human bone cells in vitro

in Journal of Endocrinology
Restricted access


The effects of six natural vitamin D metabolites of potential biological and therapeutic interest, 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), 25-hydroxyvitamin D3 (25-OH-D3), 24R,25-dihydroxyvitamin D3 (24R,25-(OH)2D3), 1,24R,25-trihydroxyvitamin D3 (1,24R,25-(OH)3D3), 25S,26-dihydroxyvitamin D3 (25S,26-(OH)2D3) and 1,25S,26-trihydroxyvitamin D3 (1,25S,26-(OH)3D3) on cell replication and expression of the osteoblastic phenotype in terms of osteocalcin production were examined in cultured human bone cells. At a dose of 5 × 10−12 mol/l, 1,25-(OH)2D3 stimulated cell proliferation, whereas at higher doses (5 × 10−9−5 × 10 −6 mol/l) cell growth was inhibited in a dose-dependent manner. The same pattern of effects was seen for the other metabolites in a rank order of potency: 1,25-(OH)2D3> 1,25S,26-(OH)3D3 = 1,24R,25-(OH)3D3>25S,26-(OH)2D3 = 24R,25-(OH)2D3 = 25-OH-D3. Synthesis of osteocalcin was induced by 1,25-(OH)2D3 in doses similar to those required to inhibit cell proliferation. Biphasic responses were observed for some of the metabolites in terms of osteocalcin synthesis, inhibitory effects becoming apparent at 5 × 10−6 mol/l. The cells did not secrete osteocalcin spontaneously. These results indicate that vitamin D metabolites may regulate growth and expression of differentiated functions of normal human osteoblasts.

J. Endocr. (1985) 105, 391–396


Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 312 81 19
Full Text Views 110 2 1
PDF Downloads 94 4 2