In order to assess glucocorticoid actions on fetal cartilage development, [3H]dexamethasone binding site levels in fetal bovine cartilaginous tissues from long bones were measured, using a whole cell assay at 37 °C. Displaceable [3H]dexamethasone binding in epiphysial growth cartilage was maximal (16·2 fmol/106 cells) in fetuses of 10–15 cm crown–rump length (CR), and declined to 22% of the maximum in fetuses of 20–30 cm CR. Subsequently, [3H]dexamethasone binding rose to a plateau (13·0 fmol/106 cells) in fetuses of 30–80 cm CR and declined in those of 80–100 cm CR. When measured in growth plate cartilage, [3H]dexamethasone binding was significantly higher in fetuses of 40–80 cm CR (39 fmol/106 cells) than in those of 80–100 cm CR. There was no significant change of [3H]dexamethasone binding affinities in epiphysial chondrocytes of 5–100 cm CR fetuses or in growth plate chondrocytes of 40–100 cm CR fetuses.
These results demonstrate that fetal cartilaginous tissues during development possess varying cellular levels of glucocorticoid binding and may thus have temporal changes in sensitivity to glucocorticoid hormones.
J. Endocr. (1986) 110, 257–262
Journal of Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 1 | 1 | 0 |
PDF Downloads | 2 | 0 | 0 |