The effects of hyperprolactinaemia on serum levels of LH were investigated in adult male rats of the R × U strain. Hyperprolactinaemia was induced by three pituitary grafts under the kidney capsule, transplanted on day 0 of each experiment. Special attention was paid to the contribution of prolactin-stimulated testes, adrenals and corticosterone.
In experiment 1, hyperprolactinaemia significantly reduced the serum concentrations of LH in intact rats. In spite of a significant increase in the serum levels of corticosterone, serum testosterone was not significantly affected by hyperprolactinaemia. The weights of both the adrenals and accessory sex glands were significantly increased at autopsy. In experiment 2, treatment with 10 mg corticosterone s.c. daily from day 14 to day 28 after pituitary grafting significantly reduced serum levels of both LH and testosterone. The suppression of testosterone in the hyperprolactinaemic corticosterone-treated animals was significantly less than in the corticosterone-treated control animals. The weights of the accessory sex glands were significantly increased in the hyperprolactinaemic animals. In experiment 3, rats were adrenalectomized and half of them were substituted with corticosterone. Serum testosterone levels significantly increased in both hyperprolactinaemic adrenalectomized rats and in adrenalectomized corticosterone-treated animals without any significant effect on serum LH. Again the weights of the accessory sex glands were significantly increased in the hyperprolactinaemic animals. In experiment 4, rats were adrenalectomized, gonadectomized and corticosterone treated on day 0 and then implanted with a 2, 1·5 or 1 cm silicone elastomer capsule containing testosterone. On day 28 after pituitary grafting, LH levels were significantly suppressed in animals with a 2 or 1·5 cm testosterone implant. The weights of the accessory sex glands were not increased in the hyperprolactinaemic animals.
These results show that in the male rat the inhibitory effects of hyperprolactinaemia on serum LH levels may be due to (1) increased sensitivity of the hypothalamic-pituitary axis to the negative feedback action of testosterone by prolactin and by the prolactin-stimulated corticosterone secretion and (2) stimulation of testicular testosterone secretion by prolactin, which can also explain the increased weights of the accessory sex glands. Even in the presence of high serum concentrations of corticosterone, stimulation of testicular testosterone secretion by prolactin was observed.
J. Endocr. (1987) 113,111–116
Journal of Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 0 | 0 | 0 |
PDF Downloads | 2 | 1 | 0 |