Noradrenergic stimulation of serotonin release from rat pineal glands in vitro

in Journal of Endocrinology
Authors:
V. J. Aloyo
Search for other papers by V. J. Aloyo in
Current site
Google Scholar
PubMed
Close
and
R. F. Walker
Search for other papers by R. F. Walker in
Current site
Google Scholar
PubMed
Close
Restricted access
Rent on DeepDyve

Sign up for journal news

ABSTRACT

The pharmacodynamics of serotonin (5-hydroxytryptamine; 5-HT) uptake and release were studied in rat pineal glands. Initially, uptake was tested by incubating pineals with several concentrations of [3H]5-HT. The incubation media also contained [14C]mannitol to which cells are impermeable. Since [14C]mannitol accumulates only in extracellular spaces, the radio-labelled sugar was used to determine the differential distribution of [3H]5-HT in pineal compartments.

Intracellular accumulation of 3H in pineal glands increased linearly as a function of time for [3H]5-HT concentrations ranging from 1 to 10 μmol/l. The ratio of 3H to 14C also increased for the same time-interval, indicating that the glands accumulated [3H]5-HT preferentially in non-extracellular spaces. [3H]5-HT accumulated in pineal glands which were denervated for more than 7 days before testing, suggesting that uptake is not restricted to adrenergic terminals but also occurs in pinealocytes.

In addition to uptake, spontaneous and noradrenaline-stimulated release of [3H]5-HT was tested in perifusion and/or step-transfer systems. Spontaneous release of [3H]5-HT was biphasic consisting of rapid and slower efflux phases. In contrast, release of [14C]mannitol was monophasic, characterized exclusively by rapid efflux. Since [14C]mannitol does not enter cells, the rapid and slower phases of [3H]5-HT efflux may represent release from pineal extracellular and intracellular compartments respectively. The identity of [3H]5-HT in pineal glands and perifusion media was confirmed by thin-layer chromatography. When l-noradrenaline was added to the perifusion media, [3H]5-HT efflux during the slower phase of release was significantly increased above the non-stimulated state. In contrast, d-noradrenaline was significantly less effective than l-noradrenaline in releasing [3H]5-HT. Noradrenaline also stimulated [3H]5-HT release from denervated glands, suggesting that pinealocytes secrete 5-HT in response to noradrenergic signals.

Since the pineal is innervated by fibres of the sympathetic division of the autonomic nervous system, differential release of 5-HT may occur in response to changing levels of glandular noradrenaline.

J. Endocr. (1987) 114, 3–9

 

  • Collapse
  • Expand