The pharmacodynamics of serotonin (5-hydroxytryptamine; 5-HT) uptake and release were studied in rat pineal glands. Initially, uptake was tested by incubating pineals with several concentrations of [3H]5-HT. The incubation media also contained [14C]mannitol to which cells are impermeable. Since [14C]mannitol accumulates only in extracellular spaces, the radio-labelled sugar was used to determine the differential distribution of [3H]5-HT in pineal compartments.
Intracellular accumulation of 3H in pineal glands increased linearly as a function of time for [3H]5-HT concentrations ranging from 1 to 10 μmol/l. The ratio of 3H to 14C also increased for the same time-interval, indicating that the glands accumulated [3H]5-HT preferentially in non-extracellular spaces. [3H]5-HT accumulated in pineal glands which were denervated for more than 7 days before testing, suggesting that uptake is not restricted to adrenergic terminals but also occurs in pinealocytes.
In addition to uptake, spontaneous and noradrenaline-stimulated release of [3H]5-HT was tested in perifusion and/or step-transfer systems. Spontaneous release of [3H]5-HT was biphasic consisting of rapid and slower efflux phases. In contrast, release of [14C]mannitol was monophasic, characterized exclusively by rapid efflux. Since [14C]mannitol does not enter cells, the rapid and slower phases of [3H]5-HT efflux may represent release from pineal extracellular and intracellular compartments respectively. The identity of [3H]5-HT in pineal glands and perifusion media was confirmed by thin-layer chromatography. When l-noradrenaline was added to the perifusion media, [3H]5-HT efflux during the slower phase of release was significantly increased above the non-stimulated state. In contrast, d-noradrenaline was significantly less effective than l-noradrenaline in releasing [3H]5-HT. Noradrenaline also stimulated [3H]5-HT release from denervated glands, suggesting that pinealocytes secrete 5-HT in response to noradrenergic signals.
Since the pineal is innervated by fibres of the sympathetic division of the autonomic nervous system, differential release of 5-HT may occur in response to changing levels of glandular noradrenaline.
J. Endocr. (1987) 114, 3–9
Journal of Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 2 | 1 | 0 |
PDF Downloads | 2 | 1 | 0 |