Plasma vasopressin concentrations have previously been shown to vary during the oestrous cycle of the rat, being highest on the morning of pro-oestrus and lowest on dioestrus day 1. To determine the effect of gonadal steroids on vasopressin secretion and fluid balance, mature rats were ovariectomized and given oestrogen, progesterone or vehicle alone s.c. for periods of up to 16 days. Plasma vasopressin concentrations fell after ovariectomy and this was reflected in an increase in 24-h urine volume. The normal increase in plasma vasopressin concentrations seen over daylight hours was also suppressed. The change in vasopressin concentrations observed on steroid treatment depended upon both the dose and the duration. High doses of oestrogen were associated with a fall in plasma vasopressin, probably as a result of fluid retention. Thus, of an initial group of rats given silicone elastomer implants containing 50, 500 or 1000 μg oestradiol in oil, plasma vasopressin concentrations were reduced after 7 days treatment with 1000 μg oestradiol implants in association with reduced plasma sodium concentrations. Daily s.c. injections of 100 μg oestradiol benzoate/100 g body weight produced an immediate small increase in plasma vasopressin concentrations, but by 14 days the plasma concentrations of 0·7 ± 0·16 pmol/l (mean ± s.e.m.) had fallen significantly and were less than those in the vehicle-treated group (1·2± 0·26 pmol/l). However, after treatment for 14 days with implants containing only 50 μg oestradiol, plasma vasopressin concentations were higher compared with the group receiving vehicle alone, despite the fact that the plasma osmolality was lower in the latter group, suggesting a long term resetting of the osmoreceptors. Progesterone treatment with two implants containing 17·5 mg progesterone in oil was associated with an initial suppression of plasma vasopressin concentrations, but 16 days after the implant the plasma concentrations were higher than in the control group. Neither oestrogen nor progesterone restored the vasopressin concentrations to those seen in the intact animal. Oestrogen treatment resulted in a reduction in food and water intake, whereas progesterone treatment produced an initial increase in food and water intake, and a fall in plasma osmolality which could account for the reduced plasma vasopressin. This was followed by an increase in urine flow over days 6 to 15. Thus ovariectomy had a marked effect on circulating vasopressin concentrations, probably as a result of complex changes since administration of either oestrogen or progesterone in doses giving normal circulating concentrations had little effect.
Journal of Endocrinology (1990) 124, 277–284
Journal of Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 5 | 1 | 0 |
PDF Downloads | 5 | 3 | 0 |