Development of a new Leydig cell population after the destruction of existing Leydig cells by ethane dimethane sulphonate in rats: an autoradiographic study

in Journal of Endocrinology
Authors:
K. J. Teerds
Search for other papers by K. J. Teerds in
Current site
Google Scholar
PubMed
Close
,
D. G. de Rooij
Search for other papers by D. G. de Rooij in
Current site
Google Scholar
PubMed
Close
,
F. F. G. Rommerts
Search for other papers by F. F. G. Rommerts in
Current site
Google Scholar
PubMed
Close
, and
C. J. G. Wensing
Search for other papers by C. J. G. Wensing in
Current site
Google Scholar
PubMed
Close
Restricted access
Rent on DeepDyve

Sign up for journal news

ABSTRACT

The formation of new Leydig cells in adult male rats was studied after the complete destruction of the original population by ethane dimethane sulphonate (EDS). Following administration of EDS, proliferating interstitial cells were labelled in a pulse-chase experiment by way of three [3H]thymidine injections on days 2, 3 and 4 after EDS administration. Some of the newly formed Leydig cells found 14 days after EDS administration were labelled with [3H]thymidine, indicating that these Leydig cells were derived from precursor cells, most likely mesenchymal cells, that had incorporated [3H]thymidine at days 2, 3, or 4 after EDS administration. At 21 days after EDS administration, the total number of Leydig cells (labelled plus unlabelled) had increased 7- to 16-fold compared with the number of cells that were present 14 days after EDS had been administered.

In a second series of experiments, [3H]thymidine was given 2 h before the rats were killed (short-term labelling experiment). In this experiment it was shown that the proliferative activity of the mesenchymal cells, which are presumed to be the precursors of the Leydig cells, after a considerable increase at day 2 after EDS administration, had returned to the control level at day 7. However, the total number of mesenchymal cells (labelled plus unlabelled) remained increased from 2 to 49 days after EDS administration. This indicated that the majority of the new Leydig cells which were formed from day 14 onwards probably did not derive from differentiating mesenchymal cells. The labelling index of the Leydig cells was approximately 100 times higher 21 days after EDS administration than that of the untreated controls, showing that many Leydig cells were formed by proliferation of the newly formed Leydig cells. Thereafter, the labelling index of the Leydig cells gradually decreased, whereas the total number of Leydig cells still increased threefold. At 49 days after EDS administration, the number of Leydig cells was approximately 80% of that in normal adult rats.

It is concluded that the regeneration of Leydig cells after EDS administration is the result of two successive waves of proliferation, namely of the precursor cells (mesenchymal cells) and of the newly formed Leydig cells.

Journal of Endocrinology (1990) 126, 229–236

 

  • Collapse
  • Expand