Enhancement of noradrenaline-induced inositol polyphosphate formation by glucocorticoids in rat vascular smooth muscle cells

in Journal of Endocrinology
Authors:
J. Liu
Search for other papers by J. Liu in
Current site
Google Scholar
PubMed
Close
,
R. M. Haigh
Search for other papers by R. M. Haigh in
Current site
Google Scholar
PubMed
Close
, and
C. T. Jones
Search for other papers by C. T. Jones in
Current site
Google Scholar
PubMed
Close
Restricted access
Rent on DeepDyve

Sign up for journal news

ABSTRACT

Glucocorticoids are known to regulate the contractility of vascular smooth muscle by increasing its response to noradrenaline. The molecular mechanisms for achieving this remain unclear. Recent results in our laboratory have demonstrated that glucocorticoids affect both α1-adrenoceptor number and coupling to G proteins. Whether this leads to an increase in second-messenger production has to be established. The present experiments, therefore, report the effects of dexamethasone on inositol polyphosphate production in vascular smooth muscle cells in culture. Noradrenaline induced the release of inositol polyphosphates from prelabelled [3H]inositol phosphoinositides in the membrane in a dose-dependent manner. The concentration of noradrenaline which caused half-maximal response was 1·26 μmol/l. Prazosin inhibited noradrenaline-induced inositol monophosphate formation to 10·26 ± 3·67% (mean ± s.e.m.; P < 0·01, n = 5) of control value whereas yohimbine reduced it to only 61·74 ± 11·82% (P < 0·05, n = 5), suggesting an action primarily through α1-adrenergic receptors. Dexamethasone (100 nmol/l, 48 h) enhanced noradrenaline-induced inositol monophosphate, bisphosphate and trisphosphate formation up to twofold (P < 0·001, n = 5). The enhancement of the response occurred despite the fact that dexamethasone reduced [3H]inositol prelabelling of membrane phosphoinositides by 49·5 ± 9·9% (P < 0·05, n = 3). The present results suggest that the potential action of glucocorticoids on vascular smooth muscle contractility is, at least in part, through controlling α1-adrenoceptor-mediated second-messenger production.

Journal of Endocrinology (1992) 133, 405–411

 

  • Collapse
  • Expand