The retinoids, vitamin D3 and thyroid hormone exert diverse and complex tissue-specific actions by a common mechanism within the cell nucleus. These hormones, like the classical steroid hormones, glucocorticoid and oestrogen, bind to nuclear receptor proteins and modify transcriptional activity of target genes. The receptors are members of the steroid/thyroid hormone nuclear receptor superfamily of structurally homologous ligand-responsive transcription factors which activate or repress expression of hormone-responsive target genes (Evans, 1988; Green & Chambon, 1988; Moore, 1990; O'Malley, 1990; Moore & Brent, 1991).
The receptors for 3,5,3′-l-tri-iodothyronine (T3Rs), 1,25(OH)2-vitamin D3 (VDRs) and all-trans retinoic acid (RARs) form a subclass of homologous and functionally related proteins within the steroid superfamily. The receptors can bind to DNA in the absence of ligand (Brent, Dunn, Harney et al. 1989; Graupner, Wills, Tzukerman et al. 1989), they reside in the nucleus and their response elements possess
Journal of Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 2 | 0 | 0 |
PDF Downloads | 4 | 0 | 0 |