Receptor binding of insulin-like growth factor-I to mammary microsomes from non-pregnant, pregnant and lactating sheep

in Journal of Endocrinology
Authors:
S. J. Winder
Search for other papers by S. J. Winder in
Current site
Google Scholar
PubMed
Close
,
S. D. Wheatley
Search for other papers by S. D. Wheatley in
Current site
Google Scholar
PubMed
Close
, and
I. A. Forsyth
Search for other papers by I. A. Forsyth in
Current site
Google Scholar
PubMed
Close
Restricted access
Rent on DeepDyve

Sign up for journal news

ABSTRACT

Sucrose density centrifugation was used to prepare a partially purified membrane fraction from the mammary glands of non-pregnant, pregnant and lactating sheep. The binding of125 I-labelled insulin-like growth factor-I (IGF-I) was dependent on membrane protein concentration, pH, time and temperature. The binding showed the characteristics of a type-1 IGF receptor, being displaced by IGF-I (median effective dose (ED50) 0·55 nmol/l), less effectively by IGF-II (ED50 8·8 nmol/l) and least effectively by insulin. Glucagon, ovine prolactin and ovine placental lactogen could not displace binding. A molecular weight of 135 000 was determined by affinity cross-linking using disuccinimidyl suberate; this was consistent with the reported size of the type-1 receptor α-subunit. Scatchard analysis was used to determine binding affinity and numbers of IGF-I-binding sites. A single class of high-affinity binding sites was found in all physiological states. In non-pregnant sheep and sheep at days 40, 75 and 110–120 of pregnancy and at term, the binding affinity was similar (apparent dissociation constant (Kd) 2·73 ±0·31 nmol/l, n = 22). In lactating sheep (weeks 1, 4 and 10), the binding affinity was significantly (P = 0·02) higher (Kd 0·77± 0·06 nmol/l n = 9). Binding capacity was similar in non-pregnant and pregnant sheep (1005 ± 113 fmol/mg, n = 19), but fell by parturition and remained low in lactation (570±52 fmol/mg membrane protein, n = 12). The results suggest that the mammary growth of pregnancy is not regulated at the level of the type-1 IGF receptor.

Journal of Endocrinology (1993) 136, 297–304

 

  • Collapse
  • Expand