The effects of a recombinant human GH-binding protein (rhGHBP; amino acids 1–238) on GH stimulation of rat Nb2 lymphoma cells were examined with an eluted stain assay system (ESTA). This precise bioassay utilizes the colorimetric reduction by stimulated Nb2 cells of a yellow tetrazolium salt (3-[4,5-dimethyl-thiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) to a purple formazan as its end-point. The use of a lactogenic bioassay allowed the investigation of hGHBP specificity for human GH (hGH) as opposed to prolactin. rhGHBP inhibited pituitary hGH bioactivity in a dose-dependent manner. No significant inhibition of prolactin or ACTH bioactivity occurred. It was confirmed that recombinant 20 kDa hGH also stimulated the Nb2 cells and that its relative potency was ∼ 10% of that of pituitary-derived hGH. Stimulation by 20 kDa hGH was also inhibited by rhGHBP. The highly quantitative ESTA system demonstrated that the binding protein inhibited in a competitive manner. hGH activation of the Nb2 cells did not appear to be governed by a Michaelian first-order reaction. As might then be anticipated, the concentration of rhGHBP required for 50% inhibition of GH bioactivity (IC50) changed with agonist concentrations for both 20 kDa and 22 kDa hGH. However, with equimolar concentrations of these two isohormones, the IC50 of the binding protein was virtually identical. Potentiation of hGH bioactivity in vivo by low concentrations of hGHBP has been reported but was not observed in our in vitro system when tested over a wide range of binding protein concentrations.
In conclusion, the ESTA bioassay system permitted a detailed characterization of the inhibition of hGH bioactivity by rhGHBP. The hormonal specificity confirms earlier radioligand binding studies, except that we found that the 20 kDa hGH variant interacts with the rhGHBP.
Journal of Endocrinology (1994) 140, 445–453
Journal of Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 3 | 0 | 0 |
PDF Downloads | 4 | 1 | 0 |