Can testosterone alone maintain the gonadotrophin-releasing hormone antagonist-induced suppression of spermatogenesis in the non-human primate?

in Journal of Endocrinology
Authors:
G F Weinbauer
Search for other papers by G F Weinbauer in
Current site
Google Scholar
PubMed
Close
,
A Limberger
Search for other papers by A Limberger in
Current site
Google Scholar
PubMed
Close
,
H M Behre
Search for other papers by H M Behre in
Current site
Google Scholar
PubMed
Close
, and
E Nieschlag
Search for other papers by E Nieschlag in
Current site
Google Scholar
PubMed
Close
Restricted access
Rent on DeepDyve

Sign up for journal news

Abstract

The combination of gonadotrophin-releasing hormone (GnRH) antagonist and delayed testosterone substitution provides a promising approach towards male contraception. However, the GnRH antagonists used clinically so far cause side-effects and have to be administered continuously. We therefore used the non-human primate model to see whether the GnRH antagonist cetrorelix (which exhibits a favourable benefit-to-risk ratio in terms of anti-gonadotrophic action in normal men) induces complete and reversible suppression of spermatogenesis and whether GnRH antagonist-induced suppression of spermatogenesis can be maintained by testosterone alone.

Four groups of adult cynomolgus monkeys (Macaca fascicularis; five per group) were injected daily with 450 μg cetrorelix/kg ([N-acetyl-d-2-naphthyl-Ala1, d-4-chloro-Phe2, d-pyridyl-Ala3, d-Cit6, d-Ala10]-GnRH). Group 1 received the GnRH antagonist for 7 weeks followed by vehicle administration for another 11 weeks; group 2 was treated with GnRH antagonist for the entire 18 weeks with each animal receiving a single testosterone implant during weeks 11–18 to restore the ejaculatory response to electrostimulation; group 3 received the GnRH antagonist for 18 weeks and testosterone buciclate (TB) was injected during week 6 of GnRH antagonist treatment; group 4 was subjected to GnRH antagonist administration for 7 weeks and received TB (200 mg/animal) during week 6.

Under GnRH antagonist treatment alone serum concentrations of testosterone were suppressed. TB maintained testosterone levels two- to fourfold above baseline levels in groups 3 and 4 and prevented the recovery of LH secretion for about 20 weeks after GnRH antagonist withdrawal, whereas inhibin levels increased significantly from week 8 onwards. Group 2 animals were azoospermic during weeks 12–18 of GnRH antagonist administration. The TB-replaced groups developed azoospermia or became severely oligozoospermic. Quantitation of cell numbers by flow cytometry during weeks 6 and 18 revealed that TB (groups 3 and 4) had prevented a further decline of germ cell production compared with group 2 but had maintained the spermatogenic status present at week 6 (onset of TB substitution). All inhibitory effects of cetrorelix and/or TB were reversible after cessation of treatment.

These findings demonstrate that cetrorelix reversibly inhibits spermatogenesis in a non-human primate model. Although TB maintained the GnRH antagonist-induced suppression of spermatogenesis, azoospermia was not achieved. This latter effect may reflect either a direct spermatogenesis-supporting effect of the high dose of TB or the partial recovery of inhibin secretion (indirectly reflecting FSH secretion) or a combination of both. Thus, maintenance of GnRH antagonist-induced spermatogenic inhibition by testosterone alone appears theoretically possible. Whether this regimen will, however, permit the induction of sustained azoospermia remains to be seen, preferably in human studies.

Journal of Endocrinology (1994) 142, 485–495

 

  • Collapse
  • Expand