Effects of cytochrome P450 inhibitors and of steroid hormones on the formation of 7-hydroxylated metabolites of pregnenolone in mouse brain microsomes

in Journal of Endocrinology
Authors:
J Doostzadeh
Search for other papers by J Doostzadeh in
Current site
Google Scholar
PubMed
Close
and
R Morfin
Search for other papers by R Morfin in
Current site
Google Scholar
PubMed
Close
Restricted access
Rent on DeepDyve

Sign up for journal news

Hydroxylations of pregnenolone (PREG) at the 7 alpha- and 7 beta-positions have been reported in numerous murine tissues and organs and responsible cytochrome P450 (CYP) species await identification. Using thin layer chromatography and gas chromatography-mass spectrometry, we report identification of 7 alpha-hydroxy-PREG and 7 beta-hydroxy-PREG metabolites produced in mouse brain microsome digests and kinetic studies of their production with apparent KM values of 0.5 +/- 0.1 microM and 5.1 +/- 0.6 microM for 7 alpha- and 7 beta-hydroxylation respectively. Investigation of CYP inhibitors and of steroid hormone effects on both 7 alpha- and 7 beta-hydroxylations of PREG showed that: (i) different CYP were involved in 7 alpha- and 7 beta-hydroxylation of PREG because solely 7 alpha-hydroxylation was extensively inhibited by metyrapone, alpha-naphthoflavone, ketoconazole and 3 beta-hydroxysteroids, (ii) CYP 1A2, 2D6, 2B1 and 2B11 were not responsible for 7 alpha- and 7 beta-hydroxylation of PREG because respective specific inhibitors furafylline, quinidine and chloramphenicol triggered no inhibition, (iii) CYP 1A1 was responsible for only part of the 7 beta-hydroxylation of PREG because use of alpha-naphthoflavone, which inhibits specifically CYP 1A1, did not suppress entirely 7 beta-hydroxylation, while ketoconazole, metyrapone and antipyrine, which do not inhibit CYP 1A1, decreased part of the 7 beta-hydroxylation, (iv) 7 alpha-hydroxylation of PREG may be shared with other 3 beta-hydroxysteroids such as isoandrosterone and 5-androstene-3 beta,17 beta-diol which were strong inhibitors, but not with dehydroepiandrosterone which was a non-competitive inhibitor as weak as 3-oxosteroids, and (v) 7 beta-hydroxylation of PREG was not markedly changed by other steroids. Taken together, these findings will be of use for identification of the CYP species responsible for 7 alpha- and 7 beta-hydroxylation of PREG and for studies of their activities in brain.

 

  • Collapse
  • Expand