Transplantation of human mobilized mononuclear cells improved diabetic neuropathy

in Journal of Endocrinology
Authors:
Se Hee Min Division of Endocrinology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea

Search for other papers by Se Hee Min in
Current site
Google Scholar
PubMed
Close
,
Jung Hee Kim Division of Endocrinology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea

Search for other papers by Jung Hee Kim in
Current site
Google Scholar
PubMed
Close
,
Yu Mi Kang Innovative Research Institute for Cell Therapy, Seoul, Republic of Korea

Search for other papers by Yu Mi Kang in
Current site
Google Scholar
PubMed
Close
,
Seung Hak Lee Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea

Search for other papers by Seung Hak Lee in
Current site
Google Scholar
PubMed
Close
,
Byung-Mo Oh Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea

Search for other papers by Byung-Mo Oh in
Current site
Google Scholar
PubMed
Close
,
Kyou-Sup Han Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Republic of Korea

Search for other papers by Kyou-Sup Han in
Current site
Google Scholar
PubMed
Close
,
Meihua Zhang Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea

Search for other papers by Meihua Zhang in
Current site
Google Scholar
PubMed
Close
,
Hoe Suk Kim Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea

Search for other papers by Hoe Suk Kim in
Current site
Google Scholar
PubMed
Close
,
Woo Kyung Moon Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea

Search for other papers by Woo Kyung Moon in
Current site
Google Scholar
PubMed
Close
,
Hakmo Lee Innovative Research Institute for Cell Therapy, Seoul, Republic of Korea

Search for other papers by Hakmo Lee in
Current site
Google Scholar
PubMed
Close
,
Kyong Soo Park Division of Endocrinology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
Innovative Research Institute for Cell Therapy, Seoul, Republic of Korea

Search for other papers by Kyong Soo Park in
Current site
Google Scholar
PubMed
Close
, and
Hye Seung Jung Division of Endocrinology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
Innovative Research Institute for Cell Therapy, Seoul, Republic of Korea

Search for other papers by Hye Seung Jung in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to H S Jung: junghs@snu.ac.kr
Restricted access
Rent on DeepDyve

Sign up for journal news

Rodent stem cells demonstrated regenerative effects in diabetic neuropathy via improvement in nerve perfusion. As a pre-clinical step, we explored if human mobilized mononuclear cells (hMNC) would have the same effects in rats. hMNC were injected into Rt. hind-limb muscles of streptozotocin-induced diabetic nude rats, and the grafts were monitored using with MRI. After 4 weeks, the effects were compared with those in the vehicle-injected Lt. hind limbs. Nerve conduction, muscle perfusion and gene expression of sciatic nerves were assessed. Induction of diabetes decreased nerve function and expression of Mpz and Met in the sciatic nerves, which are related with myelination. hMNC injection significantly improved the amplitude of compound muscle action potentials along with muscle perfusion and sciatic nerve Mpz expression. On MRI, hypointense signals were observed for 4 weeks at the graft site, but their correlation with the presence of hMNC was detectable for only 1 week. To evaluate paracrine effects of hMNC, IMS32 cells were tested with hepatocyte growth factor (HGF), which had been reported as a myelination-related factor from stem cells. We could observe that HGF enhanced Mpz expression in the IMS32 cells. Because hMNC secreted HGF, IMS32 cells were co-cultured with hMNC, and the expression of Mpz increased along with morphologic maturation. The hMNC-induced Mpz expression was abrogated by treatment of anti-HGF. These results suggest that hMNC could improve diabetic neuropathy, possibly through enhancement of myelination as well as perfusion. According to in vitro studies, HGF was involved in the hMNC-induced myelination activity, at least in part.

 

  • Collapse
  • Expand
  • Akiyama Y, Radtke C, Honmou O & Kocsis JD 2002 Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia 39 229236. (https://doi.org/10.1002/glia.10102)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Baffour R, Pakala R, Hellinga D, Joner M, Okubagzi P, Epstein SE & Waksman R 2006 Bone marrow-derived stem cell interactions with adult cardiomyocytes and skeletal myoblasts in vitro. Cardiovascular Revascularization Medicine 7 222230. (https://doi.org/10.1016/j.carrev.2006.06.005)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bai L, Lennon DP, Caplan AI, DeChant A, Hecker J, Kranso J, Zaremba A & Miller RH 2012 Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models. Nature Neuroscience 15 862870. (https://doi.org/10.1038/nn.3109)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bhansali A, Asokumar P, Walia R, Bhansali S, Gupta V, Jain A, Sachdeva N, Sharma RR, Marwaha N & Khandelwal N 2014 Efficacy and safety of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus: a randomized placebo-controlled study. Cell Transplantation 23 10751085. (https://doi.org/10.3727/096368913X665576)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carlton SM, Du J, Tan HY, Nesic O, Hargett GL, Bopp AC, Yamani A, Lin Q, Willis WD & Hulsebosch CE 2009 Peripheral and central sensitization in remote spinal cord regions contribute to central neuropathic pain after spinal cord injury. Pain 147 265276. (https://doi.org/10.1016/j.pain.2009.09.030)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cermenati G, Abbiati F, Cermenati S, Brioschi E, Volonterio A, Cavaletti G, Saez E, De Fabiani E, Crestani M, Garcia-Segura LM, et al.2012 Diabetes-induced myelin abnormalities are associated with an altered lipid pattern: protective effects of LXR activation. Journal of Lipid Research 53 300310. (https://doi.org/10.1194/jlr.M021188)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dey I, Midha N, Singh G, Forsyth A, Walsh SK, Singh B, Kumar R, Toth C & Midha R 2013 Diabetic Schwann cells suffer from nerve growth factor and neurotrophin-3 underproduction and poor associability with axons. Glia 61 19901999. (https://doi.org/10.1002/glia.22570)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dubsky M, Jirkovska A, Bem R, Fejfarova V, Pagacova L, Sixta B, Varga M, Langkramer S, Sykova E & Jude EB 2013 Both autologous bone marrow mononuclear cell and peripheral blood progenitor cell therapies similarly improve ischaemia in patients with diabetic foot in comparison with control treatment. Diabetes/Metabolism Research and Reviews 29 369376. (https://doi.org/10.1002/dmrr.2399)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Galimi F, Bagnara GP, Bonsi L, Cottone E, Follenzi A, Simeone A & Comoglio PM 1994 Hepatocyte growth factor induces proliferation and differentiation of multipotent and erythroid hemopoietic progenitors. Journal of Cell Biology 127 17431754. (https://doi.org/10.1083/jcb.127.6.1743)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gerasimovskaya E, Kratzer A, Sidiakova A, Salys J, Zamora M & Taraseviciene-Stewart L 2012 Interplay of macrophages and T cells in the lung vasculature. American Journal of Physiology. Lung Cellular and Molecular Physiology 302 L1014L1022. (https://doi.org/10.1152/ajplung.00357.2011)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Granstam SO & Granstam E 2011 Endothelin-induced changes in blood flow in STZ-diabetic and non-diabetic rats: relation to nitric oxide synthase and cyclooxygenase inhibition. Journal of Physiological Sciences 61 497505. (https://doi.org/10.1007/s12576-011-0171-x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Han JW, Sin MY & Yoon YS 2013 Cell therapy for diabetic neuropathy using adult stem or progenitor cells. Diabetes and Metabolism Journal 37 91105. (https://doi.org/10.4093/dmj.2013.37.2.91)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Han JW, Choi D, Lee MY, Huh YH & Yoon YS 2016 Bone marrow-derived mesenchymal stem cells improve diabetic neuropathy by direct modulation of both angiogenesis and myelination in peripheral nerves. Cell Transplantation 25 313326. (https://doi.org/10.3727/096368915X688209)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hao W, Tashiro S, Hasegawa T, Sato Y, Kobayashi T, Tando T, Katsuyama E, Fujie A, Watanabe R, Morita M, et al.2015 Hyperglycemia promotes Schwann cell de-differentiation and de-myelination via sorbitol accumulation and Igf1 protein Down-regulation. Journal of Biological Chemistry 290 1710617115. (https://doi.org/10.1074/jbc.M114.631291)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hasegawa T, Kosaki A, Shimizu K, Matsubara H, Mori Y, Masaki H, Toyoda N, Inoue-Shibata M, Nishikawa M & Iwasaka T 2006 Amelioration of diabetic peripheral neuropathy by implantation of hematopoietic mononuclear cells in streptozotocin-induced diabetic rats. Experimental Neurology 199 274280. (https://doi.org/10.1016/j.expneurol.2005.11.001)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Higashi Y, Kimura M, Hara K, Noma K, Jitsuiki D, Nakagawa K, Oshima T, Chayama K, Sueda T, Goto C, et al.2004 Autologous bone-marrow mononuclear cell implantation improves endothelium-dependent vasodilation in patients with limb ischemia. Circulation 109 12151218. (https://doi.org/10.1161/01.CIR.0000121427.53291.78)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Higuchi T, Anton M, Dumler K, Seidl S, Pelisek J, Saraste A, Welling A, Hofmann F, Oostendorp RA, Gansbacher B, et al.2009 Combined reporter gene PET and iron oxide MRI for monitoring survival and localization of transplanted cells in the rat heart. Journal of Nuclear Medicine 50 10881094. (https://doi.org/10.2967/jnumed.108.060665)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang PP, Li SZ, Han MZ, Xiao ZJ, Yang RC, Qiu LG & Han ZC 2004 Autologous transplantation of peripheral blood stem cells as an effective therapeutic approach for severe arteriosclerosis obliterans of lower extremities. Thrombosis and Haemostasis 91 606609. (https://doi.org/10.1160/TH03-06-0343)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang P, Li S, Han M, Xiao Z, Yang R & Han ZC 2005 Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care 28 21552160. (https://doi.org/10.2337/diacare.28.9.2155)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK, Oh BH, Lee MM & Park YB 2004 Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology 24 288293. (https://doi.org/10.1161/01.ATV.0000114236.77009.06)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jeong JO, Kim MO, Kim H, Lee MY, Kim SW, Ii M, Lee JU, Lee J, Choi YJ, Cho HJ, et al.2009 Dual angiogenic and neurotrophic effects of bone marrow-derived endothelial progenitor cells on diabetic neuropathy. Circulation 119 699708. (https://doi.org/10.1161/CIRCULATIONAHA.108.789297)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kato N, Nemoto K, Nakanishi K, Morishita R, Kaneda Y, Uenoyama M, Ikeda T & Fujikawa K 2005 Nonviral gene transfer of human hepatocyte growth factor improves streptozotocin-induced diabetic neuropathy in rats. Diabetes 54 846854. (https://doi.org/10.2337/diabetes.54.3.846)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kessler JA, Smith AG, Cha BS, Choi SH, Wymer J, Shaibani A, Ajroud-Driss S, Vinik A, VM202 DPN-II Study Group 2015 Double-blind, placebo-controlled study of HGF gene therapy in diabetic neuropathy. Annals of Clinical and Translational Neurology 2 465478. (https://doi.org/10.1002/acn3.186)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim H, Park JS, Choi YJ, Kim MO, Huh YH, Kim SW, Han JW, Lee J, Kim S, Houge MA, et al.2009 Bone marrow mononuclear cells have neurovascular tropism and improve diabetic neuropathy. Stem Cells 27 16861696. (https://doi.org/10.1002/stem.87)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim HS, Kim H, Park KS & Moon WK 2010 Evaluation of porcine pancreatic islets transplanted in the kidney capsules of diabetic mice using a clinically approved superparamagnetic iron oxide (SPIO) and a 1.5T MR scanner. Korean Journal of Radiology 11 673682. (https://doi.org/10.3348/kjr.2010.11.6.673)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ko SH & Cha BY 2012 Diabetic peripheral neuropathy in type 2 diabetes mellitus in Korea. Diabetes and Metabolism Journal 36 612. (https://doi.org/10.4093/dmj.2012.36.1.6)

  • Krasnoselsky A, Massay MJ, DeFrances MC, Michalopoulos G, Zarnegar R & Ratner N 1994 Hepatocyte growth factor is a mitogen for Schwann cells and is present in neurofibromas. Journal of Neuroscience 14 72847290. (https://doi.org/10.1523/JNEUROSCI.14-12-07284.1994)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kroger N, Renges H, Kruger W, Gutensohn K, Loliger C, Carrero I, Cortes L & Zander AR 2000 A randomized comparison of once versus twice daily recombinant human granulocyte colony-stimulating factor (filgrastim) for stem cell mobilization in healthy donors for allogeneic transplantation. British Journal of Haematology 111 761765. (https://doi.org/10.1046/j.1365-2141.2000.02412.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lauria G, Lombardi R, Borgna M, Penza P, Bianchi R, Savino C, Canta A, Nicolini G, Marmiroli P & Cavaletti G 2005 Intraepidermal nerve fiber density in rat foot pad: neuropathologic-neurophysiologic correlation. Journal of the Peripheral Nervous System 10 202208. (https://doi.org/10.1111/j.1085-9489.2005.0010210.x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee KA, Park KT, Yu HM, Jin HY, Baek HS & Park TS 2013 Effect of granulocyte colony-stimulating factor on the peripheral nerves in streptozotocin-induced diabetic rat. Diabetes and Metabolism Journal 37 286290. (https://doi.org/10.4093/dmj.2013.37.4.286)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee SH, Oh BM, Lee G, Choi H, Cheon GJ & Lee SU 2014 Feasibility of 18F-FDG PET as a noninvasive diagnostic tool of muscle denervation: a preliminary study. Journal of Nuclear Medicine 55 17371740. (https://doi.org/10.2967/jnumed.114.140731)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li TS, Cheng K, Malliaras K, Smith RR, Zhang Y, Sun B, Matsushita N, Blusztajn A, Terrovitis J, Kusuoka H, et al.2012 Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. Journal of the American College of Cardiology 59 942953. (https://doi.org/10.1016/j.jacc.2011.11.029)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu AM, Lu G, Tsang KS, Li G, Wu Y, Huang ZS, Ng HK, Kung HF & Poon WS 2010 Umbilical cord-derived mesenchymal stem cells with forced expression of hepatocyte growth factor enhance remyelination and functional recovery in a rat intracerebral hemorrhage model. Neurosurgery 67 357365. Discussion 365–356. (https://doi.org/10.1227/01.NEU.0000371983.06278.B3)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maina F, Hilton MC, Ponzetto C, Davies AM & Klein R 1997 Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons. Genes and Development 11 33413350. (https://doi.org/10.1101/gad.11.24.3341)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maina F, Hilton MC, Andres R, Wyatt S, Klein R & Davies AM 1998 Multiple roles for hepatocyte growth factor in sympathetic neuron development. Neuron 20 835846. (https://doi.org/10.1016/S0896-6273(00)80466-3)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mangialardi G & Madeddu P 2016 Bone marrow-derived stem cells: a mixed blessing in the multifaceted world of diabetic complications. Current Diabetes Reports 16 43. (https://doi.org/10.1007/s11892-016-0730-x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Naruse K, Sato J, Funakubo M, Hata M, Nakamura N, Kobayashi Y, Kamiya H, Shibata T, Kondo M, Himeno T, et al.2011 Transplantation of bone marrow-derived mononuclear cells improves mechanical hyperalgesia, cold allodynia and nerve function in diabetic neuropathy. PLoS ONE 6 e27458. (https://doi.org/10.1371/journal.pone.0027458)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Riegler J, Wells JA, Kyrtatos PG, Price AN, Pankhurst QA & Lythgoe MF 2010 Targeted magnetic delivery and tracking of cells using a magnetic resonance imaging system. Biomaterials 31 53665371. (https://doi.org/10.1016/j.biomaterials.2010.03.032)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Russell JW, Berent-Spillson A, Vincent AM, Freimann CL, Sullivan KA & Feldman EL 2008 Oxidative injury and neuropathy in diabetes and impaired glucose tolerance. Neurobiology of Disease 30 420429. (https://doi.org/10.1016/j.nbd.2008.02.013)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Selagzi H, Buyukakilli B, Cimen B, Yilmaz N & Erdogan S 2008 Protective and therapeutic effects of swimming exercise training on diabetic peripheral neuropathy of streptozotocin-induced diabetic rats. Journal of Endocrinological Investigation 31 971978. (https://doi.org/10.1007/BF03345634)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shibata T, Naruse K, Kamiya H, Kozakae M, Kondo M, Yasuda Y, Nakamura N, Ota K, Tosaki T, Matsuki T, et al.2008 Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes 57 30993107. (https://doi.org/10.2337/db08-0031)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, et al.2002 Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360 427435. (https://doi.org/10.1016/S0140-6736(02)09670-8)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Terrovitis J, Stuber M, Youssef A, Preece S, Leppo M, Kizana E, Schar M, Gerstenblith G, Weiss RG, Marban E, et al.2008 Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation 117 15551562. (https://doi.org/10.1161/CIRCULATIONAHA.107.732073)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • van der Heyden J, van der Meer P, Birnie E, de Coo IF, Castro Cabezas M, Ozcan B, Veeze H, Visser GH, Aanstoot HJ & Blok JH 2013 Decreased excitability of the distal motor nerve of young patients with type 1 diabetes mellitus. Pediatric Diabetes 14 519525. (https://doi.org/10.1111/pedi.12048)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang ZX, Cao JX, Li D, Zhang XY, Liu JL, Li JL, Wang M, Liu Y, Xu BL & Wang HB 2015 Clinical efficacy of autologous stem cell transplantation for the treatment of patients with type 2 diabetes mellitus: a meta-analysis. Cytotherapy 17 956968. (https://doi.org/10.1016/j.jcyt.2015.02.014)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Watabe K, Fukuda T, Tanaka J, Honda H, Toyohara K & Sakai O 1995 Spontaneously immortalized adult mouse Schwann cells secrete autocrine and paracrine growth-promoting activities. Journal of Neuroscience Research 41 279290. (https://doi.org/10.1002/jnr.490410215)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Watson JC & Daube JR 2016 Compound muscle action potentials. In Clinical Neurophysiology, 4th edn, chapter 17, pages 257291. Oxford, UK: Oxford University Press. (https://doi.org/10.1093/med/9780190259631.003.0017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, Jacobs P & Lewis J 1989 Superparamagnetic iron oxide: pharmacokinetics and toxicity. American Journal of Roentgenology 152 167173. (https://doi.org/10.2214/ajr.152.1.167)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Womack L, Peters D, Barrett EJ, Kaul S, Price W & Lindner JR 2009 Abnormal skeletal muscle capillary recruitment during exercise in patients with type 2 diabetes mellitus and microvascular complications. Journal of the American College of Cardiology 53 21752183. (https://doi.org/10.1016/j.jacc.2009.02.042)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu GY, Li G, Liu N & Huang LY 2011 Mechanisms underlying purinergic P2X3 receptor-mediated mechanical allodynia induced in diabetic rats. Molecular Pain 7 60. (https://doi.org/10.1186/1744-8069-7-60)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang XM, Toma JG, Bamji SX, Belliveau DJ, Kohn J, Park M & Miller FD 1998 Autocrine hepatocyte growth factor provides a local mechanism for promoting axonal growth. Journal of Neuroscience 18 83698381. (https://doi.org/10.1523/JNEUROSCI.18-20-08369.1998)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation