Local gastric RAAS inhibition improves gastric microvascular perfusion in dogs

in Journal of Endocrinology

Correspondence should be addressed to R Truse: Richard.Truse@med.uni-duesseldorf.de
Restricted access

During circulatory shock, gastrointestinal microcirculation is impaired, especially via activation of the renin-angiotensin-aldosterone system. Therefore, inhibition of the renin-angiotensin-aldosterone system might be beneficial in maintaining splanchnic microcirculation. The aim of this study was to analyze whether locally applied losartan influences gastric mucosal perfusion (µflow, µvelo) and oxygenation (µHbO2) without systemic hemodynamic changes. In repetitive experiments six anesthetized dogs received 30 mg losartan topically on the oral and gastric mucosa during normovolemia and hemorrhage (−20% blood volume). Microcirculatory variables were measured with reflectance spectrometry, laser Doppler flowmetry and incident dark field imaging. Transpulmonary thermodilution and pulse contour analysis were used to measure systemic hemodynamic variables. Gastric barrier function was assessed via differential absorption of inert sugars. During normovolemia, losartan increased gastric µflow from 99 ± 6 aU to 147 ± 17 aU and µvelo from 17 ± 1 aU to 19 ± 1 aU. During hemorrhage, losartan did not improve µflow. µvelo decreased from 17 ± 1 aU to 14 ± 1 aU in the control group. Application of losartan did not significantly alter µvelo (16 ± 1 aU) compared to the control group and to baseline levels (17 ± 1 aU). No effects of topical losartan on macrohemodynamic variables or microcirculatory oxygenation were detected. Gastric microcirculatory perfusion is at least partly regulated by local angiotensin receptors. Topical application of losartan improves local perfusion via vasodilation without significant effects on systemic hemodynamics. During mild hemorrhage losartan had minor effects on regional perfusion, probably because of a pronounced upstream vasoconstriction.

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 1092 898 41
Full Text Views 58 42 2
PDF Downloads 25 14 4
  • AcklandGGrocottMPMythenMG 2000 Understanding gastrointestinal perfusion in critical care: so near, and yet so far. Critical Care 4 269281. (https://doi.org/10.1186/cc709)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AnemanASvenssonMBrooméMBiberBPettersonAFändriksL 2000 Specific angiotensin II receptor blockage improves intestinal perfusion during graded hypovolemia in pigs. Critical Care Medicine 28 818823. (https://doi.org/10.1097/00003246-200003000-00034)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • AykutGVeenstraGScorcellaCInceCBoermaC 2015 Cytocam-IDF (incident dark field illumination) imaging for bedside monitoring of the microcirculation. Intensive Care Medicine Experimental 3 40. (https://doi.org/10.1186/s40635-015-0040-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • BaileyRWBulkleyGBHamiltonSRMorrisJBHaglundUH 1987 Protection of the small intestine from nonocclusive mesenteric ischemic injury due to cardiogenic shock. American Journal of Surgery 153 108116. (https://doi.org/10.1016/0002-9610(87)90210-8)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • BezemerRBartelsSABakkerJInceC 2012 Clinical review: clinical imaging of the sublingual microcirculation in the critically ill – where do we stand? Critical Care 16 224. (https://doi.org/10.1186/cc11236)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BregonzioCArmandoIAndoHJezovaMBaiardiGSaavedraJM 2003 Anti-inflammatory effects of angiotensin II AT1 receptor antagonism prevent stress-induced gastric injury. American Journal of Physiology: Gastrointestinal and Liver Physiology 285 G414G423. (https://doi.org/10.1152/ajpgi.00058.2003)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BrilhausDBräutigamAMettler-AltmannTWinterKWeberAPM 2016 Reversible burst of transcriptional changes during induction of crassulacean acid metabolism in Talinum triangulare. Plant Physiology 170 102122. (https://doi.org/10.1104/pp.15.01076)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • CareyRM 2017 AT2 receptors: potential therapeutic targets for hypertension. American Journal of Hypertension 30 339347. (https://doi.org/10.1093/ajh/hpw121)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • CarsettiAPierantozziSAyaHBazurroSDonatiARhodesACecconiM 2015 Accuracy of an automatic analysis software to detect microvascular density parameters. Intensive Care Medicine Experimental 3 A415. (https://doi.org/10.1186/2197-425X-3-S1-A415)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CeppaEPFuhKCBulkleyGB 2003 Mesenteric hemodynamic response to circulatory shock. Current Opinion in Critical Care 9 127132. (https://doi.org/10.1097/00075198-200304000-00008)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • ChristDDWongPCWongYNHartSDQuonCYLamGN 1994 The pharmacokinetics and pharmacodynamics of the angiotensin II receptor antagonist losartan potassium (DuP 753/MK 954) in the dog. Journal of Pharmacology and Experimental Therapeutics 268 11991205.

    • Search Google Scholar
    • Export Citation
  • CordtsPRLaMorteWWFisherJBDelGuercioCNiehoffJPivacekLEDennisRCSiebensHGeorgioAValeriCR 1992 Poor predictive value of hematocrit and hemodynamic parameters for erythrocyte deficits after extensive elective vascular operations. Surgery Gynecology and Obstetrics 175 243248. (https://doi.org/10.1097/00132586-199306000-00030)

    • Search Google Scholar
    • Export Citation
  • CorrêaTDJegerVPereiraAJTakalaJDjafarzadehSJakobSM 2014 Angiotensin II in septic shock: effects on tissue perfusion, organ function, and mitochondrial respiration in a porcine model of fecal peritonitis. Critical Care Medicine 42 e550e559. (https://doi.org/10.1097/CCM.0000000000000397)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De BackerDHollenbergSBoermaCGoedhartPBücheleGOspina-TasconGDobbeIInceC 2007 How to evaluate the microcirculation: report of a round table conference. Critical Care 11 R101. (https://doi.org/10.1186/cc6118)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de CavanaghEMVPiotrkowskiBBassoNStellaIInserraFFerderLFragaCG 2003 Enalapril and losartan attenuate mitochondrial dysfunction in aged rats. FASEB Journal 17 10961098. (https://doi.org/10.1096/fj.02-0063fje)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeitchEAForsytheRAnjariaDLivingstonDHLuQXuD-ZRedlH 2004 The role of lymph factors in lung injury, bone marrow suppression, and endothelial cell dysfunction in a primate model of trauma-hemorrhagic shock. Shock 22 221228. (https://doi.org/10.1097/01.shk.0000133592.55400.83)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DysonDH 2012 Positive pressure ventilation during anesthesia in dogs: assessment of surface area derived tidal volume. Canadian Veterinary Journal 53 6366.

    • Search Google Scholar
    • Export Citation
  • FerrarioCMChappellMC 2004 Novel angiotensin peptides. Cellular and Molecular Life Sciences 61 27202727. (https://doi.org/10.1007/s00018-004-4243-4)

    • Search Google Scholar
    • Export Citation
  • FournellASchwarteLAKindgen-MillesDMüllerEScheerenTWL 2003 Assessment of microvascular oxygen saturation in gastric mucosa in volunteers breathing continuous positive airway pressure. Critical Care Medicine 31 17051710. (https://doi.org/10.1097/01.CCM.0000063281.47070.53)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • FrancisRCEHöhneCKaczmarczykGBoemkeW 2004 Effect of angiotensin II and endothelin-1 receptor blockade on the haemodynamic and hormonal changes after acute blood loss and after retransfusion in conscious dogs. Acta Physiologica Scandinavica 180 319328. (https://doi.org/10.1111/j.1365-201X.2004.01265.x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • GuntherSGimbroneMAAlexanderRW 1980 Identification and characterization of the high affinity vascular angiotensin II receptor in rat mesenteric artery. Circulation Research 47 278286. (https://doi.org/10.1161/01.RES.47.2.278)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • HiltebrandLBKrejciVJakobSMTakalaJSigurdssonGH 2007 Effects of vasopressin on microcirculatory blood flow in the gastrointestinal tract in anesthetized pigs in septic shock. Anesthesiology 106 11561167. (https://doi.org/10.1097/01.anes.0000267599.02140.86)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • HornigBLandmesserUKohlerCAhlersmannDSpiekermannSChristophATatgeHDrexlerH 2001 Comparative effect of ace inhibition and angiotensin II type 1 receptor antagonism on bioavailability of nitric oxide in patients with coronary artery disease: role of superoxide dismutase. Circulation 103 799805. (https://doi.org/10.1161/01.CIR.103.6.799)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • InoueNKinugawaSSugaTYokotaTHirabayashiKKurodaSOkitaKTsutsuiH 2012 Angiotensin II-induced reduction in exercise capacity is associated with increased oxidative stress in skeletal muscle. American Journal of Physiology: Heart and Circulatory Physiology 302 H1202H1210. (https://doi.org/10.1152/ajpheart.00534.2011)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JakobSMTakalaJ 2000 Gut perfusion in the critically ill. Intensive Care Medicine 26 813815. (https://doi.org/10.1007/s001340051253)

  • KonstamMANeatonJDDicksteinKDrexlerHKomajdaMMartinezFARieggerGAJMalbecqWSmithRDGupthaS 2009 Effects of high-dose versus low-dose losartan on clinical outcomes in patients with heart failure (HEAAL study): a randomised, double-blind trial. Lancet 374 18401848. (https://doi.org/10.1016/S0140-6736(09)61913-9)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • KortbeekJBAl TurkiSAAliJAntoineJABouillonBBraselKBrennemanFBrinkPRBrohiKBurrisD 2008 Advanced trauma life support, 8th edition, the evidence for change. Journal of Trauma 64 16381650. (https://doi.org/10.1097/TA.0b013e3181744b03)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KrugA 2006 Mikrozirkulation und Sauerstoffversorgung des Gewebes: Methode des so genannten O2C (oxygen to see) [Microcirculation and oxygen supply of tissue: method of so-called 02C]. Phlebologie 35 300312. (https://doi.org/10.1055/s-0037-1622158)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KurzKDZehrJE 1978 Mechanisms of enhanced renin secretion during CO2 retention in dogs. American Journal of Physiology 234 H573H581. (https://doi.org/10.1152/ajpheart.1978.234.5.H573)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaesserMFändriksLPetterssonAEwertSAnemanA 2000 Angiotensin II blockade in existing hypovolemia: effects of candesartan in the porcine splanchnic and renal circulation. Shock 14 471477. (https://doi.org/10.1097/00024382-200014040-00009)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • LaesserMOiYEwertSFändriksLAnemanA 2004 The angiotensin II receptor blocker candesartan improves survival and mesenteric perfusion in an acute porcine endotoxin model. Acta Anaesthesiologica Scandinavica 48 198204. (https://doi.org/10.1111/j.0001-5172.2004.00283.x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LiSWuWCHeCYHanZJinDYWangL 2008 Change of intestinal mucosa barrier function in the progress of non-alcoholic steatohepatitis in rats. World Journal of Gastroenterology 14 32543258. (https://doi.org/10.3748/wjg.14.3254)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • LoMWGoldbergMRMcCreaJBLuHFurtekCIBjornssonTD 1995 Pharmacokinetics of losartan, an angiotensin II receptor antagonist, and its active metabolite EXP3174 in humans. Clinical Pharmacology and Therapeutics 58 641649. (https://doi.org/10.1016/0009-9236(95)90020-9)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • MarsilioRD’AntigaLZancanLDussiniNZacchelloF 1998 Simultaneous HPLC determination with light-scattering detection of lactulose and mannitol in studies of intestinal permeability in pediatrics. Clinical Chemistry 44 16851691.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • MeissnerAWeberTPVan AkenHRolfN 1999 Limited upper thoracic epidural block and splanchnic perfusion in dogs. Anesthesia and Analgesia 89 13781381. (https://doi.org/10.1097/00000539-199912000-00009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • OlschewskiHGhofraniHASchmehlTWinklerJWilkensHHöperMMBehrJKleberFXSeegerW 2000 Inhaled iloprost to treat severe pulmonary hypertension. An uncontrolled trial. German PPH Study Group. Annals of Internal Medicine 132 435443. (https://doi.org/10.7326/0003-4819-132-6-200003210-00003)

    • Search Google Scholar
    • Export Citation
  • OlszaneckiRMadejJSuskiMGebskaABujak-GizyckaBKorbutR 2009 Angiotensin metabolism in rat stomach wall: prevalence of angiotensin-(1–7) formation. Journal of Physiology and Pharmacology 60 191196.

    • Search Google Scholar
    • Export Citation
  • PappenheimerJRReissKZ 1987 Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. Journal of Membrane Biology 100 123136. (https://doi.org/10.1007/BF02209145)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PawlikMWKwiecienSPtak-BelowskaAPajdoROlszaneckiRSuskiMMadejJTargoszAKonturekSJKorbutR 2016 The renin-angiotensin system and its vasoactive metabolite angiotensin-(1–7) in the mechanism of the healing of preexisting gastric ulcers. The involvement of Mas receptors, nitric oxide, prostaglandins and proinflammatory cytokines. Journal of Physiology and Pharmacology 67 7591.

    • Search Google Scholar
    • Export Citation
  • PriceHLDeutschSMarshallBEStephenGWBeharMGNeufeldGR 1966 Hemodynamic and metabolic effects of hemorrhage in man, with particular reference to the splanchnic circulation. Circulation Research 18 469474. (https://doi.org/10.1161/01.RES.18.5.469)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • ReillyPMBulkleyGB 1993 Vasoactive mediators and splanchnic perfusion. Critical Care Medicine 21 S55S68. (https://doi.org/10.1097/00003246-199302001-00011)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SatoNKawanoSKamadaTTakedaM 1986 Hemodynamics of the gastric mucosa and gastric ulceration in rats and in patients with gastric ulcer. Digestive Diseases and Sciences 31 35S41S. (https://doi.org/10.1007/BF01309321)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchwartgesIPickerOBeckCScheerenTWLSchwarteLA 2010 Hypercapnic acidosis preserves gastric mucosal microvascular oxygen saturation in a canine model of hemorrhage. Shock 34 636642. (https://doi.org/10.1097/SHK.0b013e3181e68422)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SiniscalchiAGamberiniLLaiciCBardiTFaenzaS 2015 Thoracic epidural anesthesia: effects on splanchnic circulation and implications in Anesthesia and Intensive care. World Journal of Critical Care Medicine 4 89104. (https://doi.org/10.5492/wjccm.v4.i1.89)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • TakadaSKinugawaSHirabayashiKSugaTYokotaTTakahashiMFukushimaAHommaTOnoTSobirinMAet al2013 Angiotensin II receptor blocker improves the lowered exercise capacity and impaired mitochondrial function of the skeletal muscle in type 2 diabetic mice. Journal of Applied Physiology 114 844857. (https://doi.org/10.1152/japplphysiol.00053.2012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ThaiHWollmuthJGoldmanSGaballaM 2003 Angiotensin subtype 1 rReceptor (AT1) blockade improves vasorelaxation in heart failure by up-regulation of endothelial nitric-oxide synthase via activation of the AT2 receptor. Journal of Pharmacology and Experimental Therapeutics 307 11711178. (https://doi.org/10.1124/jpet.103.054916)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ThomasVLNielsenMS 1991 Administration of angiotensin II in refractory septic shock. Critical Care Medicine 19 10841086. (https://doi.org/10.1097/00003246-199108000-00020)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • TruseRHinterbergJSchulzJHerminghausAWeberAMettler-AltmannTBauerIPickerOVollmerC 2017 Effect of topical iloprost and nitroglycerin on gastric microcirculation and barrier function during hemorrhagic shock in dogs. Journal of Vascular Research 54 109121. (https://doi.org/10.1159/000464262)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • UmeharaSTanakaMNishikawaT 2006 Effects of sevoflurane anesthesia on carotid-cardiac baroreflex responses in humans. Anesthesia and Analgesia 102 3844. (https://doi.org/10.1213/01.ane.0000183651.10514.9a)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • VäisänenOParviainenIRuokonenEHippeläinenMBergEHendolinHTakalaJ 1998 Epidural analgesia with bupivacaine does not improve splanchnic tissue perfusion after aortic reconstruction surgery. British Journal of Anaesthesia 81 893898. (https://doi.org/10.1093/bja/81.6.893)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • VerdantCLDe BackerDBruhnAClausiCMSuFWangZRodriguezHPriesARVincentJL 2009 Evaluation of sublingual and gut mucosal microcirculation in sepsis: a quantitative analysis. Critical Care Medicine 37 28752881. (https://doi.org/10.1097/CCM.0b013e3181b029c1)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • VollmerCSchwartgesIBehmkeRBauerIPickerO 2013a Hypercapnia counteracts captopril-induced depression of gastric mucosal oxygenation. Journal of Endocrinology 218 245253. (https://doi.org/10.1530/JOE-13-0132)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VollmerCSchwartgesISwertzMBeckCBauerIPickerO 2013b Hypothermia improves oral and gastric mucosal microvascular oxygenation during hemorrhagic shock in dogs. Oxidative Medicine and Cellular Longevity 2013 589606. (https://doi.org/10.1155/2013/589606)

    • Search Google Scholar
    • Export Citation
  • VollmerCWeberAPMWallenfangMHoffmannTMettler-AltmannTTruseRBauerIPickerOMathesAM 2017 Melatonin pretreatment improves gastric mucosal blood flow and maintains intestinal barrier function during hemorrhagic shock in dogs. Microcirculation 24 e12345. (https://doi.org/10.1111/micc.12345)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WallPBuisingCHendersonLFreemanBVincentRAlbrightJParadiseN 2003 Enalaprilat improves systemic and mesenteric blood flow during resuscitation from hemorrhagic shock in dogs. Shock 19 289296. (https://doi.org/10.1097/00024382-200303000-00015)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • WeirMR 2007 Effects of renin-angiotensin system inhibition on end-organ protection: can we do better? Clinical Therapeutics 29 18031824. (https://doi.org/10.1016/j.clinthera.2007.09.019)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • YilmazENVahlACvan RijGLVinkGQLange-De KlerkESBromHLRauwerdaJA 1999 The renin-angiotensin system in swine during hypovolaemic shock combined with low-flow ischaemia of the sigmoid colon. Cardiovascular Surgery 7 539544. (https://doi.org/10.1016/S0967-2109(99)00009-5)

    • Crossref
    • Search Google Scholar
    • Export Citation