Glucagon regulates hepatic mitochondrial function and biogenesis through FOXO1

in Journal of Endocrinology

Correspondence should be addressed to S Guo: shaodong.guo@tamu.edu
Restricted access

Glucagon promotes hepatic glucose production maintaining glucose homeostasis in the fasting state. Glucagon maintains at high level in both diabetic animals and human, contributing to hyperglycemia. Mitochondria, a major place for glucose oxidation, are dysfunctional in diabetic condition. However, whether hepatic mitochondrial function can be affected by glucagon remains unknown. Recently, we reported that FOXO1 is an important mediator in glucagon signaling in control of glucose homeostasis. In this study, we further assessed the role of FOXO1 in the action of glucagon in the regulation of hepatic mitochondrial function. We found that glucagon decreased the heme production in a FOXO1-dependent manner, suppressed heme-dependent complex III (UQCRC1) and complex IV (MT-CO1) and inhibited hepatic mitochondrial function. However, the suppression of mitochondrial function by glucagon was largely rescued by deleting the Foxo1 gene in hepatocytes. Glucagon tends to reduce hepatic mitochondrial biogenesis by attenuating the expression of NRF1, TFAM and MFN2, which is mediated by FOXO1. In db/db mice, we found that hepatic mitochondrial function was suppressed and expression levels of UQCRC1, MT-CO1, NRF1 and TFAM were downregulated in the liver. These findings suggest that hepatic mitochondrial function can be impaired when hyperglucagonemia occurs in the patients with diabetes mellitus, resulting in organ failure.

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 1405 1405 152
Full Text Views 242 242 2
PDF Downloads 92 92 2
  • AjiokaRSPhillipsJDKushnerJP 2006 Biosynthesis of heme in mammals. Biochimica et Biophysica Acta 1763 723736. (https://doi.org/10.1016/j.bbamcr.2006.05.005)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • AtamnaHFrey IiWH 2007 Mechanisms of mitochondrial dysfunction and energy deficiency in Alzheimer’s disease. Mitochondrion 7 297310. (https://doi.org/10.1016/j.mito.2007.06.001)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • AtamnaHLiuJAmesBN 2001 Heme deficiency selectively interrupts assembly of mitochondrial complex IV in human fibroblasts: relevance to aging. Journal of Biological Chemistry 276 4841048416. (https://doi.org/10.1074/jbc.M108362200)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AtamnaHWalterPBAmesBN 2002 The role of heme and iron-sulfur clusters in mitochondrial biogenesis, maintenance, and decay with age. Archives of Biochemistry and Biophysics 397 345353. (https://doi.org/10.1006/abbi.2001.2671)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • BaggioLLDruckerDJ 2007 Biology of incretins: GLP-1 and GIP. Gastroenterology 132 21312157. (https://doi.org/10.1053/j.gastro.2007.03.054)

  • ChengZGuoSCoppsKDongXKolliparaRRodgersJTDepinhoRAPuigserverPWhiteMF 2009 FoxO1 integrates insulin signaling with mitochondrial function in the liver. Nature Medicine 15 13071311. (https://doi.org/10.1038/nm.2049)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • ConsoliA 1992. Role of liver in pathophysiology of NIDDM. Diabetes Care 15 430441. (https://doi.org/10.2337/diacare.15.3.430)

  • HabeggerKMHeppnerKMGearyNBartnessTJDimarchiRTschöpMH 2010 The metabolic actions of glucagon revisited. Nature Reviews: Endocrinology 6 689697. (https://doi.org/10.1038/nrendo.2010.187)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • JiangGZhangBB 2003 Glucagon and regulation of glucose metabolism. American Journal of Physiology: Endocrinology and Metabolism 284 E671E678. (https://doi.org/10.1152/ajpendo.00492.2002)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KhiatiSBaechlerSAFactorVMZhangHHuangSYDalla RosaISourbierCNeckersLThorgeirssonSSPommierY 2015 Lack of mitochondrial topoisomerase I (TOP1mt) impairs liver regeneration. PNAS 112 1128211287. (https://doi.org/10.1073/pnas.1511016112)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • KimHJKhalimonchukOSmithPMWingeDR 2012 Structure, function, and assembly of heme centers in mitochondrial respiratory complexes. Biochimica et Biophysica Acta 1823 16041616. (https://doi.org/10.1016/j.bbamcr.2012.04.008)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • LeeSDongHH 2017 FoxO integration of insulin signaling with glucose and lipid metabolism. Journal of Endocrinology 233 R67R79. (https://doi.org/10.1530/JOE-17-0002)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeeYWangMYDuXQCharronMJUngerRH 2011 Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice. Diabetes 60 391397. (https://doi.org/10.2337/db10-0426)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • LiangYOsborneMCMoniaBPBhanotSGaardeWAReedCShePJettonTLDemarestKT 2004 Reduction in glucagon receptor expression by an antisense oligonucleotide ameliorates diabetic syndrome in db/db mice. Diabetes 53 410417. (https://doi.org/10.2337/diabetes.53.2.410)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • LiuCLinJD 2011 PGC-1 coactivators in the control of energy metabolism. Acta Biochimica and Biophysica Sinica 43 248257. (https://doi.org/10.1093/abbs/gmr007)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LuMWanMLeavensKFChuQMonksBRFernandezSAhimaRSUekiKKahnCRBirnbaumMJ 2012 Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and FoxO1. Nature Medicine 18 388395. (https://doi.org/10.1038/nm.2686)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • MillerRABirnbaumMJ 2016 Glucagon: acute actions on hepatic metabolism. Diabetologia 59 13761381. (https://doi.org/10.1007/s00125-016-3955-y)

  • MontgomeryMKTurnerN 2015 Mitochondrial dysfunction and insulin resistance: an update. Endocrine Connections 4 R1R15. (https://doi.org/10.1530/EC-14-0092)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MüllerTDFinanBClemmensenCDimarchiRDTschöpMH 2017 The new biology and pharmacology of glucagon. Physiological Reviews 97 721766. (https://doi.org/10.1152/physrev.00025.2016)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • NakaeJParkBCAcciliD 1999 Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a wortmannin-sensitive pathway. Journal of Biological Chemistry 274 1598215985. (https://doi.org/10.1074/jbc.274.23.15982)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NasrallahCMHorvathTL 2014 Mitochondrial dynamics in the central regulation of metabolism. Nature Reviews: Endocrinology 10 650658. (https://doi.org/10.1038/nrendo.2014.160)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • RenaGGuoSCichySCUntermanTGCohenP 1999 Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. Journal of Biological Chemistry 274 1717917183. (https://doi.org/10.1074/jbc.274.24.17179)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RistowMPfisterMFYeeAJSchubertMMichaelLZhangCYUekiKMichaelMDLowellBBKahnCR 2000 Frataxin activates mitochondrial energy conversion and oxidative phosphorylation. PNAS 97 1223912243. (https://doi.org/10.1073/pnas.220403797)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • SandovalDAD’AlessioDA 2015 Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiological Reviews 95 513548. (https://doi.org/10.1152/physrev.00013.2014)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • ScarpullaRC 2011 Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochimica et Biophysica Acta 1813 12691278. (https://doi.org/10.1016/j.bbamcr.2010.09.019)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • SchmollDWalkerKSAlessiDRGremplerRBurchellAGuoSWaltherRUntermanTG 2000 Regulation of glucose-6-phosphatase gene expression by protein kinase Bα and the forkhead transcription factor FKHR evidence for insulin response unit-dependent and-independent effects of insulin on promoter activity. Journal of Biological Chemistry 275 3632436333. (https://doi.org/10.1074/jbc.M003616200)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UngerRH 1978 Role of glucagon in the pathogenesis of diabetes: the status of the controversy. Metabolism: Clinical and Experimental 27 16911709. (https://doi.org/10.1016/0026-0495(78)90291-3)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • von MeyennFPorstmannTGasserESelevsekNSchmidtAAebersoldRStoffelM 2013 Glucagon-induced acetylation of Foxa2 regulates hepatic lipid metabolism. Cell Metabolism 17 436447. (https://doi.org/10.1016/j.cmet.2013.01.014)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • WallaceDC 1999 Mitochondrial diseases in man and mouse. Science 283 14821488. (https://doi.org/10.1126/science.283.5407.1482)

  • WuYPanQYanHZhangKGuoXXuZYangWQiYGuoCAHornsbyC 2018 Novel mechanism of FoxO1 phosphorylation in glucagon signaling in control of glucose homeostasis. Diabetes 67 21672182. (https://doi.org/10.2337/db18-0674)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • YoonTCowanJA 2004 Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis. Journal of Biological Chemistry 279 2594325946. (https://doi.org/10.1074/jbc.C400107200)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • YouleRJVan Der BliekAM 2012 Mitochondrial fission, fusion, and stress. Science 337 10621065. (https://doi.org/10.1126/science.1219855)

  • ZhangYLyverERKnightSALesuisseEDancisA 2005 Frataxin and mitochondrial carrier proteins, Mrs3p and Mrs4p, cooperate in providing iron for heme synthesis. Journal of Biological Chemistry 280 1979419807. (https://doi.org/10.1074/jbc.M500397200)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ZhangWPatilSChauhanBGuoSPowellDRLeJKlotsasAMatikaRXiaoXFranksRHeidenreichKA 2006 FoxO1 regulates multiple metabolic pathways in the liver effects on gluconeogenic, glycolytic, and lipogenic gene expression. Journal of Biological Chemistry 281 1010510117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ZhangKLiLQiYZhuXGanBDepinhoRAAverittTGuoS 2012 Hepatic suppression of FoxO1 and Foxo3 causes hypoglycemia and hyperlipidemia in mice. Endocrinology 153 631646. (https://doi.org/10.1210/en.2011-1527)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation