Cholestasis-associated glucocorticoid overexposure does not increase atherogenesis

in Journal of Endocrinology
Correspondence should be addressed to M Hoekstra: hoekstra@lacdr.leidenuniv.nl
Restricted access

Chronic glucocorticoid overexposure predisposes to the development of atherosclerotic cardiovascular disease in humans. Cholestatic liver disease is associated with increased plasma glucocorticoid levels. Here, we determined – in a preclinical setting – whether the chronic presence of cholestatic liver disease also induces a concomitant negative impact on atherosclerosis susceptibility. Hereto, regular chow diet-fed atherosclerosis-susceptible hypercholesterolemic apolipoprotein E (APOE)-knockout mice were treated with the bile duct toxicant alpha-naphthylisothiocyanate (ANIT) for 8 weeks. ANIT exposure induced the development of fibrotic cholestatic liver disease as evident from collagen deposits and compensatory bile duct hyperproliferation within the liver and the rise in plasma levels of bilirubin (+60%; P < 0.01) and bile acids (10-fold higher; P < 0.01). Adrenal weights (+22%; P < 0.01) and plasma corticosterone levels (+72%; P < 0.01) were increased in ANIT-treated mice. In contrast, atherosclerosis susceptibility was not increased in response to ANIT feeding, despite the concomitant increase in plasma free cholesterol (+30%; P < 0.01) and cholesteryl ester (+42%; P < 0.001) levels. The ANIT-induced hypercorticosteronemia coincided with marked immunosuppression as judged from the 50% reduction (P < 0.001) in circulating lymphocyte numbers. However, hepatic glucocorticoid signaling was not enhanced after ANIT treatment. It thus appears that the immunosuppressive effect of glucocorticoids is uncoupled from their metabolic effect under cholestatic disease conditions. In conclusion, we have shown that cholestatic liver disease-associated endogenous glucocorticoid overexposure does not increase atherosclerosis susceptibility in APOE-knockout mice. Our studies provide novel preclinical evidence for the observations that the hypercholesterolemia seen in cholestatic human subjects does not translate into a higher risk for atherosclerotic cardiovascular disease.

 

      Society for Endocrinology

Related Articles

Article Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 536 536 219
Full Text Views 75 75 23
PDF Downloads 44 44 14

Altmetrics

Figures

  • View in gallery

    (A) Representative images show the increased keratin 19 protein (red staining; bottom panels) in ductular structures and the presence of periportal collagen deposits (blue staining; top panels) in sections from ANIT-treated mice versus reduced levels and absence, respectively, in controls. (B, C, D, E, F and G) Effect of ANIT treatment on hepatic mRNA expression levels of collagen type I alpha 1 chain (COL1A1), keratin 19 (KRT19) and several genes involved in bile acid metabolism. Data represent means + s.e.m. of 10 ANIT-treated and 11 control mice. *P < 0.05, ***P < 0.001 versus control. A full colour version of this figure is available at https://doi.org/10.1530/JOE-19-0079.

  • View in gallery

    Effect of ANIT treatment on plasma corticosterone levels (A), adrenal relative mRNA expression levels of steroidogenic genes involved in the conversion of cholesterol into corticosterone (B), and body weight-corrected adrenal weights (C). Data represent means + s.e.m. of 10 ANIT-treated and 11 control mice. **P < 0.01 versus control.

  • View in gallery

    (A) Representative images showing Oil red O stainings (red; left panels) for total lesion size, MOMA-2 stainings (black; left-middle panels) for macrophage content, Trichrome stainings (blue; right-middle panels) for collagen content and CD3 stainings (arrows; right panels) for T cell content on sections from ANIT-treated mice and controls. (B) Quantification of absolute lesion sizes and relative lesional macrophage, collagen and T cell contents. Data in graphs represent individual data points and group means + s.e.m. (horizontal line). *P < 0.05 versus control. A full colour version of this figure is available at https://doi.org/10.1530/JOE-19-0079.

  • View in gallery

    Effect of ANIT treatment on non-fasting plasma triglyceride, free cholesterol and cholesterol ester levels (A), and the cholesterol distribution over the different lipoprotein fractions (B). Data represent means + s.e.m. of 10 ANIT-treated and 11 control mice. **P < 0.01, ***P < 0.001 versus control. HDL, high-density lipoprotein; LDL, low-density lipoprotein; VLDL, very-low-density lipoprotein.

  • View in gallery

    Effect of ANIT treatment on blood leukocyte concentrations (A), hepatic relative mRNA expression levels of established glucocorticoid target genes (B) and plasma glucose levels (C). Data represent means + s.e.m. of 10 ANIT-treated and 11 control mice. ***P < 0.001 versus control.

References

  • AlloccaMCrosignaniAGrittiAGhilardiGGobattiDCarusoDZuinMPoddaMBattezzatiPM 2006 Hypercholesterolaemia is not associated with early atherosclerotic lesions in primary biliary cirrhosis. Gut 55 17951800. (https://doi.org/10.1136/gut.2005.079814)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • AlnoutiYCsanakyILKlaassenCD 2008 Quantitative-profiling of bile acids and their conjugates in mouse liver, bile, plasma, and urine using LC-MS/MS. Journal of Chromatography: B Analytical Technologies in the Biomedical and Life Sciences 873 209217. (https://doi.org/10.1016/j.jchromb.2008.08.018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • BellLNWulffJComerfordMVuppalanchiRChalasaniN 2015 Serum metabolic signatures of primary biliary cirrhosis and primary sclerosing cholangitis. Liver International 35 263274. (https://doi.org/10.1111/liv.12680)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BhanAKDienstagJLWandsJRSchlossmanSFReinherzEL 1982 Alterations of T-cell subsets in primary biliary cirrhosis. Clinical and Experimental Immunology 47 351358.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • BorgiusLJSteffensenKRGustafssonJATreuterE 2002 Glucocorticoid signaling is perturbed by the atypical orphan receptor and corepressor SHP. Journal of Biological Chemistry 277 4976149766. (https://doi.org/10.1074/jbc.M205641200)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChangPYLuSCSuTCChouSFHuangWHMorrisettJDChenCHLiauCSLeeYT 2004 Lipoprotein-X reduces LDL atherogenicity in primary biliary cirrhosis by preventing LDL oxidation. Journal of Lipid Research 45 21162122. (https://doi.org/10.1194/jlr.M400229-JLR200)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • ChiangJY 2009 Bile acids: regulation of synthesis. Journal of Lipid Research 50 19551966. (https://doi.org/10.1194/jlr.R900010-JLR200)

  • CrippinJSLindorKDJorgensenRKottkeBAHarrisonJMMurtaughPADicksonER 1992 Hypercholesterolemia and atherosclerosis in primary biliary cirrhosis: what is the risk? Hepatology 15 858862. (https://doi.org/10.1002/hep.1840150518)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • DanskyHMCharltonSAHarperMMSmithJD 1997 T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. PNAS 94 46424646. (https://doi.org/10.1073/pnas.94.9.4642)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ElferinkRPOttenhoffRvan MarleJFrijtersCMSmithAJGroenAK 1998 Class III P-glycoproteins mediate the formation of lipoprotein X in the mouse. Journal of Clinical Investigation 102 17491757. (https://doi.org/10.1172/JCI3597)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emerging Risk Factors CollaborationDi AngelantonioESarwarNPerryPKaptogeSRayKKThompsonAWoodAMLewingtonSSattarN 2009 Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302 19932000. (https://doi.org/10.1001/jama.2009.1619)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • EnsrudKGrimmRHJr 1992 The white blood cell count and risk for coronary heart disease. American Heart Journal 124 207213. (https://doi.org/10.1016/0002-8703(92)90942-O)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • FaggianoAPivonelloRSpieziaSDe MartinoMCFilippellaMDi SommaCLombardiGColaoA 2003 Cardiovascular risk factors and common carotid artery caliber and stiffness in patients with Cushing’s disease during active disease and 1 year after disease remission. Journal of Clinical Endocrinology and Metabolism 88 25272533. (https://doi.org/10.1210/jc.2002-021558)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GilesJTPostWSBlumenthalRSPolakJPetriMGelberACSzkloMBathonJM 2011 Longitudinal predictors of progression of carotid atherosclerosis in rheumatoid arthritis. Arthritis and Rheumatism 63 32163225. (https://doi.org/10.1002/art.30542)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • GlaserSSGaudioERaoAPierceLMOnoriPFranchittoAFrancisHLDostalDEVenterJKDeMorrowS 2009 Morphological and functional heterogeneity of the mouse intrahepatic biliary epithelium. Laboratory Investigation 89 456469. (https://doi.org/10.1038/labinvest.2009.6)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GrootendorstJEnthovenLDalmSde KloetEROitzlMS 2004 Increased corticosterone secretion and early-onset of cognitive decline in female apolipoprotein E-knockout mice. Behavioural Brain Research 148 167177. (https://doi.org/10.1016/S0166-4328(03)00188-8)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • HambruchEMiyazaki-AnzaiSHahnUMatysikSBoettcherAPerović-OttstadtSSchlüterTKinzelOKrolHDDeuschleU 2012 Synthetic farnesoid X receptor agonists induce high-density lipoprotein-mediated transhepatic cholesterol efflux in mice and monkeys and prevent atherosclerosis in cholesteryl ester transfer protein transgenic low-density lipoprotein receptor (-/-) mice. Journal of Pharmacology and Experimental Therapeutics 343 556567. (https://doi.org/10.1124/jpet.112.196519)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannah-ShmouniFStratakisCA 2018 An overview of inborn errors of metabolism manifesting with primary adrenal insufficiency. Reviews in Endocrine and Metabolic Disorders 19 5367. (https://doi.org/10.1007/s11154-018-9447-2)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HartmanHBGardellSJPetucciCJWangSKruegerJAEvansMJ 2009 Activation of farnesoid X receptor prevents atherosclerotic lesion formation in LDLR-/- and apoE-/- mice. Journal of Lipid Research 50 10901100. (https://doi.org/10.1194/jlr.M800619-JLR200)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HoekstraMVan EckM 2016 HDL is redundant for adrenal steroidogenesis in LDLR knockout mice with a human-like lipoprotein profile. Journal of Lipid Research 57 631637. (https://doi.org/10.1194/jlr.M066019)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • HoekstraMMeursIKoendersMOutRHildebrandRBKruijtJKVan EckMVan BerkelTJ 2008 Absence of HDL cholesteryl ester uptake in mice via SR-BI impairs an adequate adrenal glucocorticoid-mediated stress response to fasting. Journal of Lipid Research 49 738745. (https://doi.org/10.1194/jlr.M700475-JLR200)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • HoekstraMYeDHildebrandRBZhaoYLammersBStitzingerMKuiperJVan BerkelTJVan EckM 2009 Scavenger receptor class B type I-mediated uptake of serum cholesterol is essential for optimal adrenal glucocorticoid production. Journal of Lipid Research 50 10391046. (https://doi.org/10.1194/jlr.M800410-JLR200)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HoekstraMKorporaalSJLiZZhaoYVan EckMVan BerkelTJ 2010 Plasma lipoproteins are required for both basal and stress-induced adrenal glucocorticoid synthesis and protection against endotoxemia in mice. American Journal of Physiology: Endocrinology and Metabolism 299 E1038E1043. (https://doi.org/10.1152/ajpendo.00431.2010)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HoekstraMKorporaalSJvan der SluisRJHirsch-ReinshagenVBochemAEWellingtonCLVan BerkelTJKuivenhovenJAVan EckM 2013 LCAT deficiency in mice is associated with a diminished adrenal glucocorticoid function. Journal of Lipid Research 54 358364. (https://doi.org/10.1194/jlr.M030080)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • HohenesterSOude-ElferinkRPBeuersU 2009 Primary biliary cirrhosis. Seminars in Immunopathology 31 283307. (https://doi.org/10.1007/s00281-009-0164-5)

  • KadmielMCidlowskiJA 2013 Glucocorticoid receptor signaling in health and disease. Trends in Pharmacological Sciences 34 518530. (https://doi.org/10.1016/j.tips.2013.07.003)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • KannelWBAndersonKWilsonPW 1992 White blood cell count and cardiovascular disease. Insights from the Framingham Study. JAMA 267 12531256. (https://doi.org/10.1001/jama.267.9.1253)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • KaplanMMGershwinME 2005 Primary biliary cirrhosis. New England Journal of Medicine 353 12611273.

  • LazaridisKNLaRussoNF 2016 Primary sclerosing cholangitis. New England Journal of Medicine 375 11611170. (https://doi.org/10.1056/NEJMra1506330)

  • LongoMCrosignaniABattezzatiPMSquarcia GiussaniCInvernizziPZuinMPoddaM 2002 Hyperlipidaemic state and cardiovascular risk in primary biliary cirrhosis. Gut 51 265269. (https://doi.org/10.1136/gut.51.2.265)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • LupoliRAmbrosinoPTortoraABarbaLLupoliGADi MinnoMN 2017 Markers of atherosclerosis in patients with Cushing’s syndrome: a meta-analysis of literature studies. Annals of Medicine 49 206216. (https://doi.org/10.1080/07853890.2016.1252055)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • MarikPEGayowskiTStarzlTE & Hepatic Cortisol Research and Adrenal Pathophysiology Study Group 2005 The hepatoadrenal syndrome: a common yet unrecognized clinical condition. Critical Care Medicine 33 12541259.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • McDonaldJAHandelsmanDJDilworthPConwayAJMcCaughanGW 1993 Hypothalamic-pituitary adrenal function in end-stage non-alcoholic liver disease. Journal of Gastroenterology and Hepatology 8 247253. (https://doi.org/10.1111/j.1440-1746.1993.tb01195.x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • MitamuraT 1984 Alterations of high density lipoproteins in experimental intrahepatic cholestasis in the rat induced by administration of alpha-naphthylisothiocyanate. Journal of Biochemistry 95 2936. (https://doi.org/10.1093/oxfordjournals.jbchem.a134597)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • PalmerAKHeywoodR 1974 Pathological changes in the rhesus fetus associated with the oral administration of chenodeoxycholic acid. Toxicology 2 239246. (https://doi.org/10.1016/0300-483X(74)90015-8)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • PivonelloRDe MartinoMCDe LeoMSimeoliCColaoA 2017 Cushing’s disease: the burden of illness. Endocrine 56 1018. (https://doi.org/10.1007/s12020-016-0984-8)

  • SandilandsGPMacsweenRNGrayKGHoldenRJMillsPReidFMThomasMAWatkinsonG 1977 Reduction in peripheral blood K cells and activated T cells in primary biliary cirrhosis. Gut 18 10171020. (https://doi.org/10.1136/gut.18.12.1017)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SewnathMELevelsHHOude ElferinkRvan NoordenCJten KateFJvan DeventerSJGoumaDJ 2000 Endotoxin-induced mortality in bile duct-ligated rats after administration of reconstituted high-density lipoprotein. Hepatology 32 12891299. (https://doi.org/10.1053/jhep.2000.20525)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • SilvermanMGFerenceBAImKWiviottSDGiuglianoRPGrundySMBraunwaldESabatineMS 2016 Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA 316 12891297. (https://doi.org/10.1001/jama.2016.13985)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • SpadaroLNotoDPriviteraGTomaselliTFedeGScicaliRPiroSFayerFAltieriIAvernaM 2015 Apolipoprotein AI and HDL are reduced in stable cirrhotic patients with adrenal insufficiency: a possible role in glucocorticoid deficiency. Scandinavian Journal of Gastroenterology 50 347354. (https://doi.org/10.3109/00365521.2014.985707)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • SugitaTAmanoKNakanoMMasubuchiNSugiharaMMatsuuraT 2015 Analysis of the serum bile acid composition for differential diagnosis in patients with liver disease. Gastroenterology Research and Practice 2015 717431. (https://doi.org/10.1155/2015/717431)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • SullivanBPWeinrebPHVioletteSMLuyendykJP 2010 The coagulation system contributes to alphaVbeta6 integrin expression and liver fibrosis induced by cholestasis. American Journal of Pathology 177 28372849. (https://doi.org/10.2353/ajpath.2010.100425)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SullivanBPCuiWCoppleBLLuyendykJP 2012 Early growth response factor-1 limits biliary fibrosis in a model of xenobiotic-induced cholestasis in mice. Toxicological Sciences 126 267274. (https://doi.org/10.1093/toxsci/kfr311)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SwainMGPatchevVVergallaJChrousosGJonesEA 1993 Suppression of hypothalamic-pituitary-adrenal axis responsiveness to stress in a rat model of acute cholestasis. Journal of Clinical Investigation 91 19031908. (https://doi.org/10.1172/JCI116408)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ThorngateFEStrockbinePAEricksonSKWilliamsDL 2002 Altered adrenal gland cholesterol metabolism in the apoE-deficient mouse. Journal of Lipid Research 43 19201926. (https://doi.org/10.1194/jlr.M200205-JLR200)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Van DamGMGipsCH 1997 Primary biliary cirrhosis in the Netherlands. An analysis of associated diseases, cardiovascular risk, and malignancies on the basis of mortality figures. Scandinavian Journal of Gastroenterology 32 7783. (https://doi.org/10.3109/00365529709025067)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • van der GeestROuweneelABvan der SluisRJGroenAKVan EckMHoekstraM 2016 Endogenous glucocorticoids exacerbate cholestasis-associated liver injury and hypercholesterolemia in mice. Toxicology and Applied Pharmacology 306 17. (https://doi.org/10.1016/j.taap.2016.06.031)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • van der SluisRJVan EckMHoekstraM 2015 Adrenocortical LDL receptor function negatively influences glucocorticoid output. Journal of Endocrinology 226 145154. (https://doi.org/10.1530/JOE-15-0023)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der SluisRJvan PuijveldeGHVan BerkelTJHoekstraM 2012 Adrenalectomy stimulates the formation of initial atherosclerotic lesions: reversal by adrenal transplantation. Atherosclerosis 221 7683. (https://doi.org/10.1016/j.atherosclerosis.2011.12.022)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • VettoriSMarescaLCuomoGAbbadessaSLeonardoGValentiniG 2010 Clinical and subclinical atherosclerosis in systemic sclerosis: consequences of previous corticosteroid treatment. Scandinavian Journal of Rheumatology 39 485489. (https://doi.org/10.3109/03009741003781985)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

PubMed

Google Scholar