MCP-1 deficiency enhances browning of adipose tissue via increased M2 polarization

in Journal of Endocrinology

Correspondence should be addressed to H-S Choi: hschoi@mail.ulsan.ac.kr

*(M Rajasekaran and O-J Sul contributed equally to this work)

(E-K Choi is now at Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA)

Restricted access

Obesity is strongly associated with chronic inflammation for which adipose tissue macrophages play a critical role. The objective of this study is to identify monocyte chemoattractant protein-1 (MCP-1, CCL2) as a key player governing M1–M2 macrophage polarization and energy balance. We evaluated body weight, fat mass, adipocyte size and energy expenditure as well as core body temperature of Ccl2 knockout mice compared with wild-type mice. Adipose tissues, differentiated adipocyte and bone marrow-derived macrophages were assessed by qPCR, Western blot analysis and histochemistry. MCP-1 deficiency augmented energy expenditure by promoting browning in white adipose tissue and brown adipose tissue activity via increasing the expressions of Ucp1, Prdm16, Tnfrsf9, Ppargc1a, Nrf1 and Th and mitochondrial DNA copy number. MCP-1 abrogation promoted M2 polarization which is characterized by increased expression of Arg1, Chil3, Il10 and Klf4 whereas it decreased M1 polarization by decreased p65 nuclear translocation and attenuated expression of Itgax, Tnf and Nos2, leading to increased browning of adipocytes. Enhanced M2 polarization and attenuated M1 polarization in the absence of MCP-1 are independent. Collectively, our results suggest that the action of MCP-1 in macrophages modulates energy expenditure by impairing browning in adipose tissue.

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 1094 1094 90
Full Text Views 89 89 6
PDF Downloads 45 45 10
  • Aron-WisnewskyJTordjmanJPoitouCDarakhshanFHugolDBasdevantAAissatAGuerre-MilloMClémentK 2009 Human adipose tissue macrophages: m1 and m2 cell surface markers in subcutaneous and omental depots and after weight loss. Journal of Clinical Endocrinology and Metabolism 94 . (https://doi.org/10.1210/jc.2009-0925)

    • Search Google Scholar
    • Export Citation
  • CereijoRGavaldà-NavarroACairóMQuesada-LópezTVillarroyaJMorón-RosSSánchez-InfantesDPeyrouMIglesiasRMampelT 2018 CXCL14, a brown adipokine that mediates brown-fat-to-macrophage communication in thermogenic adaptation. Cell Metabolism 28 750.e6763.e6. (https://doi.org/10.1016/j.cmet.2018.07.015)

    • Search Google Scholar
    • Export Citation
  • CharoIF 2007 Macrophage polarization and insulin resistance: PPARgamma in control. Cell Metabolism 6 . (https://doi.org/10.1016/j.cmet.2007.07.006)

  • ChoiEKParkHJSulOJRajasekaranMYuRChoiHS 2015 Carbon monoxide reverses adipose tissue inflammation and insulin resistance upon loss of ovarian function. American Journal of Physiology: Endocrinology and Metabolism 308 E621E630. (https://doi.org/10.1152/ajpendo.00458.2014)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChoiEKRajasekaranMSulOJJoeYChungHTYuRChoiHS 2018 Impaired insulin signaling upon loss of ovarian function is associated with a reduction of tristetraprolin and an increased stabilization of chemokine in adipose tissue. Molecular and Cellular Endocrinology 461 . (https://doi.org/10.1016/j.mce.2017.09.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • DaubnerSCLeTWangS 2011 Tyrosine hydroxylase and regulation of dopamine synthesis. Archives of Biochemistry and Biophysics 1 . (https://doi.org/10.1016/j.abb.2010.12.017)

    • Search Google Scholar
    • Export Citation
  • DawsonJMiltzWMirAKWiessnerC 2003 Targeting monocyte chemoattractant protein-1 signalling in disease. Expert Opinion on Therapeutic Targets 7 . (https://doi.org/10.1517/14728222.7.1.35)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • FabbianoSSuárez-ZamoranoNRigoDVeyrat-DurebexCStevanovic DokicAColinDJTrajkovskiM 2016 Caloric restriction leads to browning of white adipose tissue through type 2 immune signaling. Cell Metabolism 24 . (https://doi.org/10.1016/j.cmet.2016.07.023)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • FischerKRuizHHJhunKFinanBOberlinDJvan der HeideVKalinovichAVPetrovicNWolfYClemmensenC 2017 Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis. Nature Medicine 23 . (https://doi.org/10.1038/nm.4316)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • GiraltMVillarroyaF 2013 White, brown, beige/Brite: different adipose cells for different functions? Endocrinology 154 . (https://doi.org/10.1210/en.2013-1403)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • GordonSMartinezFO 2010 Alternative activation of macrophages: mechanism and functions. Immunity 32 . (https://doi.org/10.1016/j.immuni.2010.05.007)

  • GuerraCKozaRAYamashitaHWalshKKozakLP 1998 Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. Journal of Clinical Investigation 102 . (https://doi.org/10.1172/JCI3155)

    • Search Google Scholar
    • Export Citation
  • Himms-HagenJMelnykAZingarettiMCCeresiEBarbatelliGCintiS 2000 Multilocular fat cells in WAT of Cl-316243-treated rats derive directly from white adipocytes. American Journal of Physiology: Cell Physiology 279 C670C681. (https://doi.org/10.1152/ajpcell.2000.279.3.C670)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HuiXGuPZhangJNieTPanYWuDFengTZhongCWangYLamKS 2015 Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metabolism 22 . (https://doi.org/10.1016/j.cmet.2015.06.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • KimWKChoiEKSulOJParkYKKimESYuRSuhJHChoiHS 2013 Monocyte chemoattractant protein-1 deficiency attenuates oxidative stress and protects against ovariectomy-induced chronic inflammation in mice. PLoS ONE 8 e72108. (https://doi.org/10.1371/journal.pone.0072108)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • KomoharaYFujiwaraYOhnishiKShiraishiDTakeyaM 2016 Contribution of macrophage polarization to metabolic diseases. Journal of Atherosclerosis and Thrombosis 23 . (https://doi.org/10.5551/jat.32359)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • LeeYHKimSNKwonHJMaddipatiKRGrannemanJG 2016 Adipogenic role of alternatively activated macrophages in β-adrenergic remodeling of white adipose tissue. American Journal of Physiology: Regulatory Integrative and Comparative Physiology 1 . (https://doi.org/10.1152/ajpregu.00355.2015)

    • Search Google Scholar
    • Export Citation
  • LiaoXSharmaNKapadiaFZhouGLuYHongHParuchuriKMahabeleshwarGHDalmasEVenteclefN 2011 Krüppel-like factor 4 regulates macrophage polarization. Journal of Clinical Investigation 121 . (https://doi.org/10.1172/JCI45444)

    • Search Google Scholar
    • Export Citation
  • LiuPSLinYWBurtonFHWeiLN 2015 Injecting engineered anti-inflammatory macrophages therapeutically induces white adipose tissue browning and improves diet-induced insulin resistance. Adipocyte 4 . (https://doi.org/10.4161/21623945.2014.981438)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • LivakKJSchmittgenTD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T) method. Methods 25 . (https://doi.org/10.1006/meth.2001.1262)

    • Search Google Scholar
    • Export Citation
  • MatesanzNBernardoEAcín-PérezRManieriEPérez-SieiraSHernández-CosidoLMontalvo-RomeralVMoraARodríguezELeiva-VegaL 2017 MKK6 controls T3-mediated browning of white adipose tissue. Nature Communications 8 856. (https://doi.org/10.1038/s41467-017-00948-z)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • NedergaardJGolozoubovaVMatthiasAAsadiAJacobssonACannonB 2001 UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochimica et Biophysica Acta 1504 . (https://doi.org/10.1016/S0005-2728(00)00247-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • OlefskyJMGlassCK 2010 Macrophages, inflammation, and insulin resistance. Annual Review of Physiology 72 . (https://doi.org/10.1146/annurev-physiol-021909-135846)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • PauleauALRutschmanRLangRPernisAWatowichSSMurrayPJ 2004 Enhancer-mediated control of macrophage-specific arginase I expression. Journal of Immunology 172 . (https://doi.org/10.4049/jimmunol.172.12.7565)

    • Search Google Scholar
    • Export Citation
  • QiuYNguyenKDOdegaardJICuiXTianXLocksleyRMPalmiterRDChawlaA 2014 Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157 . (https://doi.org/10.1016/j.cell.2014.03.066)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • RamseyerVDGrannemanJG 2016 Adrenergic regulation of cellular plasticity in brown, beige/Brite and white adipose tissues. Adipocyte 5 . (https://doi.org/10.1080/21623945.2016.1145846)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • RomeoGRLeeJShoelsonSE 2012 Metabolic syndrome, insulin resistance, and roles of inflammation – mechanisms and therapeutic targets. Arteriosclerosis Thrombosis and Vascular Biology 32 . (https://doi.org/10.1161/ATVBAHA.111.241869)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • ShanBWangXWuYXuCXiaZDaiJShaoMZhaoFHeSYangL 2017 The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity. Nature Immunology 18 . (https://doi.org/10.1038/ni.3709)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • StanfordKIMiddelbeekRJTownsendKLAnDNygaardEBHitchcoxKMMarkanKRNakanoKHirshmanMFTsengYH 2013 Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. Journal of Clinical Investigation 123 . (https://doi.org/10.1172/JCI62308)

    • Search Google Scholar
    • Export Citation
  • SulOJKeKKimWKKimSHLeeSCKimHJKimSYSuhJHChoiHS 2012 Absence of MCP-1 leads to elevated bone mass via impaired actin ring formation. Journal of Cellular Physiology 227 . (https://doi.org/10.1002/jcp.22879)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • VillarroyaFCereijoRVillarroyaJGavaldà-NavarroAGiraltM 2018 Toward an understanding of how immune cells control brown and beige adipobiology. Cell Metabolism 27 . (https://doi.org/10.1016/j.cmet.2018.04.006)

    • Search Google Scholar
    • Export Citation
  • WeisbergSPMcCannDDesaiMRosenbaumMLeibelRLFerranteAWJr 2003 Obesity is associated with macrophage accumulation in adipose tissue. Journal of Clinical Investigation 112 . (https://doi.org/10.1172/JCI19246)

    • Search Google Scholar
    • Export Citation
  • WeisbergSPHunterDHuberRLemieuxJSlaymakerSVaddiKCharoILeibelRLFerranteAWJr 2006 CCR2 modulates inflammatory and metabolic effects of high-fat feeding. Journal of Clinical Investigation 116 . (https://doi.org/10.1172/JCI24335)

    • Search Google Scholar
    • Export Citation