Myo-inositol alters 13C-labeled fatty acid metabolism in human placental explants

in Journal of Endocrinology
Authors:
Oliver C Watkins Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

Search for other papers by Oliver C Watkins in
Current site
Google Scholar
PubMed
Close
,
Mohammed Omedul Islam Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

Search for other papers by Mohammed Omedul Islam in
Current site
Google Scholar
PubMed
Close
,
Preben Selvam Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

Search for other papers by Preben Selvam in
Current site
Google Scholar
PubMed
Close
,
Reshma Appukuttan Pillai Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

Search for other papers by Reshma Appukuttan Pillai in
Current site
Google Scholar
PubMed
Close
,
Amaury Cazenave-Gassiot Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore

Search for other papers by Amaury Cazenave-Gassiot in
Current site
Google Scholar
PubMed
Close
,
Anne K Bendt Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore

Search for other papers by Anne K Bendt in
Current site
Google Scholar
PubMed
Close
,
Neerja Karnani Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore

Search for other papers by Neerja Karnani in
Current site
Google Scholar
PubMed
Close
,
Keith M Godfrey MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK

Search for other papers by Keith M Godfrey in
Current site
Google Scholar
PubMed
Close
,
Rohan M Lewis MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK

Search for other papers by Rohan M Lewis in
Current site
Google Scholar
PubMed
Close
,
Markus R Wenk Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore

Search for other papers by Markus R Wenk in
Current site
Google Scholar
PubMed
Close
, and
Shiao-Yng Chan Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore

Search for other papers by Shiao-Yng Chan in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to S-Y Chan: obgchan@nus.edu.sg
Restricted access
Rent on DeepDyve

Sign up for journal news

We postulate that myo-inositol, a proposed intervention for gestational diabetes, affects transplacental lipid supply to the fetus. We investigated the effect of myo-inositol on fatty acid processing in human placental explants from uncomplicated pregnancies. Explants were incubated with 13C-labeled palmitic acid, 13C-oleic acid and 13C-docosahexaenoic acid across a range of myo-inositol concentrations for 24 h and 48 h. The incorporation of labeled fatty acids into individual lipids was quantified by liquid chromatography mass spectrometry. At 24 h, myo-inositol increased the amount of 13C-palmitic acid and 13C-oleic-acid labeled lipids (median fold change relative to control = 1). Significant effects were seen with 30 µM myo-inositol (physiological) for 13C-palmitic acid-lysophosphatidylcholines (1.26) and 13C-palmitic acid-phosphatidylethanolamines (1.17). At 48 h, myo-inositol addition increased 13C-oleic-acid-lipids but decreased 13C-palmitic acid and 13C-docosahexaenoic-acid lipids. Significant effects were seen with 30 µM myo-inositol for 13C-oleic-acid-phosphatidylcholines (1.25), 13C-oleic-acid-phosphatidylethanolamines (1.37) and 13C-oleic-acid-triacylglycerols (1.32) and with 100 µM myo-inositol for 13C-docosahexaenoic-acid-triacylglycerols (0.78). Lipids labeled with the same 13C-fatty acid showed similar responses when tested at the same time point, suggesting myo-inositol alters upstream processes such as fatty acid uptake or activation. Myo-inositol supplementation may alter placental lipid physiology with unknown clinical consequences.

 

  • Collapse
  • Expand
  • Abu-Elheiga L, Oh W, Kordari P & Wakil SJ 2003 Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets. PNAS 1020710212. (https://doi.org/10.1073/pnas.1733877100)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Araújo JR, Correia-Branco A, Ramalho C, Keating E & Martel F 2013 Gestational diabetes mellitus decreases placental uptake of long-chain polyunsaturated fatty acids: involvement of long-chain acyl-CoA synthetase. Journal of Nutritional Biochemistry 17411750. (https://doi.org/10.1016/j.jnutbio.2013.03.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Balla T 2013 Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiological Reviews 10191137. (https://doi.org/10.1152/physrev.00028.2012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bates EJ & Saggerson D 1977 A selective decrease in mitochondrial glycerol phosphate acyltransferase activity in livers from streptozotocin-diabetic rats. FEBS Letters 229232. (https://doi.org/10.1016/0014-5793(77)80694-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bligh EG & Dyer WJ 1959 A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 911917. (https://doi.org/10.1139/o59-099)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brusati V, Jóźwik M, Jóźwik M, Teng C, Paolini C, Marconi AM & Battaglia FC 2005 Fetal and maternal non-glucose carbohydrates and polyols concentrations in normal human pregnancies at term. Pediatric Research 700704. (https://doi.org/10.1203/01.PDR.0000180549.86614.73)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Copp AJ & Greene ND 2010 Genetics and development of neural tube defects. Journal of Pathology 217230. (https://doi.org/10.1002/path.2643)

  • Crawford TJ, Crowther CA, Alsweiler J & Brown J 2015 Antenatal dietary supplementation with myo-inositol in women during pregnancy for preventing gestational diabetes. Cochrane Database of Systematic Reviews 12 CD011507. (https://doi.org/10.1002/14651858.CD011507.pub2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Croze ML & Soulage CO 2013 Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie 18111827. (https://doi.org/10.1016/j.biochi.2013.05.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • D’anna R, Di Benedetto V, Rizzo P, Raffone E, Interdonato ML, Corrado F & Di Benedetto A 2012 Myo-inositol may prevent gestational diabetes in PCOS women. Gynecological Endocrinology 440442. (https://doi.org/10.3109/09513590.2011.633665)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • D’Anna R & Santamaria A 2018 Myo-inositol supplementation in gestational diabetes. In Nutrition and Diet in Maternal Diabetes, pp 229235. Berlin, Germany: Springer. (https://doi.org/10.2337/dc18-0102)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • D’Anna R, Scilipoti A, Giordano D, Caruso C, Cannata ML, Interdonato ML, Corrado F & Di Benedetto A 2013 Myo-inositol supplementation and onset of gestational diabetes mellitus in pregnant women with a family history of type 2 diabetes: a prospective, randomized, placebo-controlled study. Diabetes Care 854857. (https://doi.org/10.2337/dc12-1371)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • D’Oria R, Laviola L, Scioscia M, Fascilla F, Bettocchi S & Giorgino F 2017 PKB/Akt phosphorylation in human umbilical vein endothelial cells is highly induced by myo-inositol and D-chiro inositol: novel potential insights in the pathogenesis of preeclampsia. Pregnancy Hypertension 56. (https://doi.org/10.1016/j.preghy.2016.10.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Delhaes F, Giza SA, Koreman T, Eastabrook G, McKenzie CA, Bedell S, Regnault TRH & de Vrijer B 2018 Altered maternal and placental lipid metabolism and fetal fat development in obesity: current knowledge and advances in non-invasive assessment. Placenta 118124. (https://doi.org/10.1016/j.placenta.2018.05.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dessì A & Fanos V 2013 Myoinositol: a new marker of intrauterine growth restriction? Journal of Obstetrics and Gynaecology 776780. (https://doi.org/10.3109/01443615.2013.831046)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Farese RV, Standaert ML, Yamada K, Huang LC, Zhang C, Cooper DR, Wang Z, Yang Y, Suzuki S & Toyota T 1994 Insulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insulin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rats. PNAS 1104011044. (https://doi.org/10.1073/pnas.91.23.11040)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gallo LA, Barrett HL & Dekker Nitert M 2017 Review: placental transport and metabolism of energy substrates in maternal obesity and diabetes. Placenta 5967. (https://doi.org/10.1016/j.placenta.2016.12.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gardosi J, Francis A, Turner S & Williams M 2018 Customized growth charts: rationale, validation and clinical benefits. American Journal of Obstetrics and Gynecology S609S618. (https://doi.org/10.1016/j.ajog.2017.12.011)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Godfrey KM, Cutfield W, Chan SY, Baker PN, Chong YS & NiPPeR Study Group 2017 Nutritional intervention preconception and during pregnancy to maintain healthy glucose metabolism and offspring health (‘NiPPeR’): study protocol for a randomised controlled trial. Trials 131. (https://doi.org/10.1186/s13063-017-1875-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haggarty P 2002 Placental regulation of fatty acid delivery and its effect on fetal growth – a review. Placenta S28S38. (https://doi.org/10.1053/plac.2002.0791)

  • Hammond LE, Gallagher PA, Wang S, Hiller S, Kluckman KD, Posey-Marcos EL, Maeda N & Coleman RA 2002 Mitochondrial glycerol-3-phosphate acyltransferase-deficient mice have reduced weight and liver triacylglycerol content and altered glycerolipid fatty acid composition. Molecular and Cellular Biology 82048214. (https://doi.org/10.1128/mcb.22.23.8204-8214.2002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hansen SB 2015 Lipid agonism: the PIP 2 paradigm of ligand-gated ion channels. Biochimica et Biophysica Acta 620628. (https://doi.org/10.1016/j.bbalip.2015.01.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harriman G, Greenwood J, Bhat S, Huang X, Wang R, Paul D, Tong L, Saha AK, Westlin WF, Kapeller R, et al. 2016 Acetyl-CoA carboxylase inhibition by ND-630 reduces hepatic steatosis, improves insulin sensitivity, and modulates dyslipidemia in rats. PNAS E1796E1805. (https://doi.org/10.1073/pnas.1520686113)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hayashi E, Hasegawa R & Tomita T 1976 Accumulation of neutral lipids in Saccharomyces carlsbergensis by myo-inositol deficiency and its mechanism. Reciprocal regulation of yeast acetyl-CoA carboxylase by fructose bisphosphate and citrate. Journal of Biological Chemistry 57595769.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hayashi E, Maeda T, Hasegawa R & Tomita T 1978 The effect of myo-inositol deficiency on lipid metabolism in rats: III. The mechanism of an enhancement in lipolysis due to myo-inositol deficiency in rats. Biochimica et Biophysica Acta 197205. (https://doi.org/10.1016/0005-2760(78)90143-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Herrera E & Ortega-Senovilla H 2018 Implications of lipids in neonatal body weight and fat mass in gestational diabetic mothers and non-diabetic controls. Current Diabetes Reports 7. (https://doi.org/10.1007/s11892-018-0978-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang LC, Fonteles MC, Houston DB, Zhang C & Larner J 1993 Chiroinositol deficiency and insulin resistance. III. Acute glycogenic and hypoglycemic effects of two inositol phosphoglycan insulin mediators in normal and streptozotocin-diabetic rats in vivo. Endocrinology 652657. (https://doi.org/10.1210/endo.132.2.8425485)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jayabalan N, Nair S, Nuzhat Z, Rice GE, Zuñiga FA, Sobrevia L, Leiva A, Sanhueza C, Gutiérrez JA, Lappas M, et al. 2017 Cross talk between adipose tissue and placenta in obese and gestational diabetes mellitus pregnancies via exosomes. Frontiers in Endocrinology 239. (https://doi.org/10.3389/fendo.2017.00239)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Keung W, Ussher JR, Jaswal JS, Raubenheimer M, Lam VHM, Wagg CS & Lopaschuk GD 2013 Inhibition of carnitine Palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice. Diabetes 711720. (https://doi.org/10.2337/db12-0259)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kreuz S, Schoelch C, Thomas L, Rist W, Rippmann JF & Neubauer H 2009 Acetyl-CoA carboxylases 1 and 2 show distinct expression patterns in rats and humans and alterations in obesity and diabetes. Diabetes/Metabolism Research and Reviews 577586. (https://doi.org/10.1002/dmrr.997)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kunjara S, Wang DY, Greenbaum AL, McLean P, Kurtz A & Rademacher TW 1999 Inositol phosphoglycans in diabetes and obesity: urinary levels of IPG A-type and IPG P-type, and relationship to pathophysiological changes. Molecular Genetics and Metabolism 488502. (https://doi.org/10.1006/mgme.1999.2936)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lager S & Powell TL 2012 Regulation of nutrient transport across the placenta. Journal of Pregnancy 179827. (https://doi.org/10.1155/2012/179827)

  • Larner J, Brautigan DL & Thorner MO 2010 D-chiro-inositol glycans in insulin signaling and insulin resistance. Molecular Medicine 543552. (https://doi.org/10.2119/molmed.2010.00107)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Matarrelli B, Vitacolonna E, D’angelo M, Pavone G, Mattei PA, Liberati M & Celentano C 2013 Effect of dietary myo-inositol supplementation in pregnancy on the incidence of maternal gestational diabetes mellitus and fetal outcomes: a randomized controlled trial. Journal of Maternal-Fetal and Neonatal Medicine 967972. (https://doi.org/10.3109/14767058.2013.766691)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Noventa M, Vitagliano A, Quaranta M, Borgato S, Abdulrahim B & Gizzo S 2016 Preventive and therapeutic role of dietary inositol supplementation in periconceptional period and during pregnancy: a summary of evidences and future applications. Reproductive Sciences 278288. (https://doi.org/10.1177/1933719115594018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Plows JF, Budin F, Andersson RA, Mills VJ, Mace K, Davidge ST, Vickers MH, Baker PN, Silva-Zolezzi I & Stanley JL 2017 The effects of myo-inositol and B and D vitamin supplementation in the db/+ mouse model of gestational diabetes mellitus. Nutrients 141. (https://doi.org/10.3390/nu9020141)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Quirk JG Jr & Bleasdale JE 1983 Myo-inositol homeostasis in the human fetus. Obstetrics and Gynecology 4144.

  • Regnault TR, Teng C, de Vrijer B, Galan HL, Wilkening RB & Battaglia FC 2010 The tissue and plasma concentration of polyols and sugars in sheep intrauterine growth retardation. Experimental Biology and Medicine 9991006. (https://doi.org/10.1258/ebm.2010.009360)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tobin KAR, Johnsen GM, Staff AC & Duttaroy AK 2009 Long-chain polyunsaturated fatty acid transport across human placental choriocarcinoma (BeWo) cells. Placenta 4147. (https://doi.org/10.1016/j.placenta.2008.10.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Uhl O, Demmelmair H, Segura MT, Florido J, Rueda R, Campoy C & Koletzko B 2015 Effects of obesity and gestational diabetes mellitus on placental phospholipids. Diabetes Research and Clinical Practice 364371. (https://doi.org/10.1016/j.diabres.2015.05.032)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Van Steenbergen A, Balteau M, Ginion A, Ferté L, Battault S, De Ravenstein CM, Balligand JL, Daskalopoulos EP, Gilon P, Despa F, et al. 2017 Sodium-myoinositol cotransporter-1, SMIT1, mediates the production of reactive oxygen species induced by hyperglycemia in the heart. Scientific Reports 41166. (https://doi.org/10.1038/srep41166)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Visiedo F, Bugatto F, Quintero-Prado R, Cózar-Castellano I, Bartha JL & Perdomo G 2015 Glucose and fatty acid metabolism in placental explants from pregnancies complicated with gestational diabetes mellitus. Reproductive Sciences 798801. (https://doi.org/10.1177/1933719114561558)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Visiedo F, Bugatto F, Sánchez V, Cózar-Castellano I, Bartha JL & Perdomo G 2013 High glucose levels reduce fatty acid oxidation and increase triglyceride accumulation in human placenta. American Journal of Physiology: Endocrinology and Metabolism E205E212. (https://doi.org/10.1152/ajpendo.00032.2013)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Watkins OC, Islam MO, Selvam P, Pillai RA, Cazenave-Gassiot A, Bendt AK, Karnani N, Godfrey KM, Lewis RM, Wenk MR, et al. 2019 Metabolism of 13C-labeled fatty acids in term human placental explants by liquid chromatography mass spectrometry. Endocrinology 13941408. (https://doi.org/10.1210/en.2018-01020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Watkins PA 2008 Very-long-chain acyl-CoA synthetases. Journal of Biological Chemistry 17731777. (https://doi.org/10.1074/jbc.R700037200)

  • Wendel AA, Lewin TM & Coleman RA 2009 Glycerol-3-phosphate acyltransferases: rate limiting enzymes of triacylglycerol biosynthesis. Biochimica et Biophysica Acta 501506. (https://doi.org/10.1016/j.bbalip.2008.10.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wolf HP 1992 Possible new therapeutic approach in diabetes mellitus by inhibition of carnitine palmitoyltransferase 1 (CPT1). Hormone and Metabolic Research: Supplement Series 6267.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xia J, Sinelnikov IV, Han B & Wishart DS 2015 MetaboAnalyst 3.0 – making metabolomics more meaningful. Nucleic Acids Research W251W257. (https://doi.org/10.1093/nar/gkv380)

  • Xu Y, Huang J, Xin W, Chen L, Zhao X, Lv Z, Liu Y & Wan Q 2014 Lipid accumulation is ahead of epithelial-to-mesenchymal transition and therapeutic intervention by acetyl-CoA carboxylase 2 silence in diabetic nephropathy. Metabolism: Clinical and Experimental 716726. (https://doi.org/10.1016/j.metabol.2014.02.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yan S, Yang XF, Liu HL, Fu N, Ouyang Y & Qing K 2015 Long-chain acyl-CoA synthetase in fatty acid metabolism involved in liver and other diseases: an update. World Journal of Gastroenterology 34923498. (https://doi.org/10.3748/wjg.v21.i12.3492)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yessoufou A, Nekoua MP, Gbankoto A, Mashalla Y & Moutairou K 2015 Beneficial effects of omega-3 polyunsaturated fatty acids in gestational diabetes: consequences in macrosomia and adulthood obesity. Journal of Diabetes Research 731434. (https://doi.org/10.1155/2015/731434)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang HY, Lv Y, Li Z, Sun L & Guo W 2019 The efficacy of myo-inositol supplementation to prevent gestational diabetes onset: a meta-analysis of randomized controlled trials. Journal of Maternal-Fetal & Neonatal Medicine 32 22492255.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation