Impaired LH surge amplitude in gonadotrope-specific progesterone receptor knockout mice

in Journal of Endocrinology
View More View Less
  • 1 Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
  • 2 Department of Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
  • 3 Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
  • 4 Department of Internal Medicine, Section Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands

Correspondence should be addressed to D J Bernard: daniel.bernard@mcgill.ca

*(C Toufaily and G Schang contributed equally to this work)

Restricted access

The progesterone receptor (PR, encoded by Pgr) plays essential roles in reproduction. Female mice lacking the PR are infertile, due to the loss of the protein’s functions in the brain, ovary, and uterus. PR is also expressed in pituitary gonadotrope cells, but its specific role therein has not been assessed in vivo. We therefore generated gonadotrope-specific Pgr conditional knockout mice (cKO) using the Cre-LoxP system. Overall, both female and male cKO mice appeared phenotypically normal. cKO females displayed regular estrous cycles (vaginal cytology) and normal fertility (litter size and frequency). Reproductive organ weights were comparable between wild-type and cKO mice of both sexes, as were production and secretion of the gonadotropins, LH and FSH, with one exception. On the afternoon of proestrus, the amplitude of the LH surge was blunted in cKO females relative to controls. Contrary to predictions of earlier models, this did not appear to derive from impaired GnRH self-priming. Collectively, these data indicate that PR function in gonadotropes may be limited to regulation of LH surge amplitude in female mice via a currently unknown mechanism.

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 963 963 65
Full Text Views 109 109 7
PDF Downloads 73 73 6
  • Abdilnour G & Bourne GA 1995 Adenosine 3′,5′-cyclic monophosphate and the self-priming effect of gonadotrophin-releasing hormone. Molecular and Cellular Endocrinology 17. (https://doi.org/10.1016/0303-7207(94)03418-s)

    • Search Google Scholar
    • Export Citation
  • Aguilar R, Bellido C & Sanchez-Criado JE 2003 The role of estrogen-dependent progesterone receptor in protein kinase C-mediated LH secretion and GnRH self-priming in rat anterior pituitary glands. Journal of Endocrinological Investigation 527532. (https://doi.org/10.1007/BF03345215)

    • Search Google Scholar
    • Export Citation
  • An BS, Poon SL, So WK, Hammond GL & Leung PC 2009 Rapid effect of GNRH1 on follicle-stimulating hormone beta gene expression in LbetaT2 mouse pituitary cells requires the progesterone receptor. Biology of Reproduction 243249. (https://doi.org/10.1095/biolreprod.109.076216)

    • Search Google Scholar
    • Export Citation
  • Attardi B, Scott R, Pfaff D & Fink G 2007 Facilitation or inhibition of the oestradiol-induced gonadotrophin surge in the immature female rat by progesterone: effects on pituitary responsiveness to gonadotrophin-releasing hormone (GnRH), GnRH self-priming and pituitary mRNAs for the progesterone receptor A and B isoforms. Journal of Neuroendocrinology 9881000. (https://doi.org/10.1111/j.1365-2826.2007.01613.x)

    • Search Google Scholar
    • Export Citation
  • Caligioni CS 2009 Assessing reproductive status/stages in mice. Current Protocols in Neuroscience A.4I.1A.4I.8. (https://doi.org/10.1002/0471142301.nsa04is48)

    • Search Google Scholar
    • Export Citation
  • Chappell PE & Levine JE 2000 Stimulation of gonadotropin-releasing hormone surges by estrogen. I. Role of hypothalamic progesterone receptors. Endocrinology 14771485. (https://doi.org/10.1210/endo.141.4.7428)

    • Search Google Scholar
    • Export Citation
  • Chappell PE, Lydon JP, Conneely OM, O’Malley BW & Levine JE 1997 Endocrine defects in mice carrying a null mutation for the progesterone receptor gene. Endocrinology 41474152. (https://doi.org/10.1210/endo.138.10.5456)

    • Search Google Scholar
    • Export Citation
  • Chappell PE, Schneider JS, Kim P, Xu M, Lydon JP, O’Malley BW & Levine JE 1999 Absence of gonadotropin surges and gonadotropin-releasing hormone self-priming in ovariectomized (OVX), estrogen (E2)-treated, progesterone receptor knockout (PRKO) mice. Endocrinology 36533658. (https://doi.org/10.1210/endo.140.8.6895)

    • Search Google Scholar
    • Export Citation
  • Cheung LYM, George AS, McGee SR, Daly AZ, Brinkmeier ML, Ellsworth BS & Camper SA 2018 Single-cell RNA sequencing reveals novel markers of male pituitary stem cells and hormone-producing cell types. Endocrinology 39103924. (https://doi.org/10.1210/en.2018-00750)

    • Search Google Scholar
    • Export Citation
  • Colin IM, Bauer-Dantoin AC, Sundaresan S, Kopp P & Jameson JL 1996 Sexually dimorphic transcriptional responses to gonadotropin-releasing hormone require chronic in vivo exposure to estradiol. Endocrinology 23002307. (https://doi.org/10.1210/endo.137.6.8641179)

    • Search Google Scholar
    • Export Citation
  • Czieselsky K, Prescott M, Porteous R, Campos P, Clarkson J, Steyn FJ, Campbell RE & Herbison AE 2016 Pulse and surge profiles of luteinizing hormone secretion in the mouse. Endocrinology 47944802. (https://doi.org/10.1210/en.2016-1351)

    • Search Google Scholar
    • Export Citation
  • Dafopoulos K, Kotsovassilis CG, Milingos S, Kallitsaris A, Galazios G, Zintzaras E, Sotiros P & Messinis IE 2004 Changes in pituitary sensitivity to GnRH in estrogen-treated post-menopausal women: evidence that gonadotrophin surge attenuating factor plays a physiological role. Human Reproduction 19851992. (https://doi.org/10.1093/humrep/deh383)

    • Search Google Scholar
    • Export Citation
  • d’Anglemont de Tassigny X, Fagg LA, Carlton MB & Colledge WH 2008 Kisspeptin can stimulate gonadotropin-releasing hormone (GnRH) release by a direct action at GnRH nerve terminals. Endocrinology 39263932. (https://doi.org/10.1210/en.2007-1487)

    • Search Google Scholar
    • Export Citation
  • Fernandez-Valdivia R, Jeong J, Mukherjee A, Soyal SM, Li J, Ying Y, Demayo FJ & Lydon JP 2010 A mouse model to dissect progesterone signaling in the female reproductive tract and mammary gland. Genesis 106113. (https://doi.org/10.1002/dvg.20586)

    • Search Google Scholar
    • Export Citation
  • Fortin J, Boehm U, Deng CX, Treier M & Bernard DJ 2014 Follicle-stimulating hormone synthesis and fertility depend on SMAD4 and FOXL2. FASEB Journal 33963410. (https://doi.org/10.1096/fj.14-249532)

    • Search Google Scholar
    • Export Citation
  • Gal A, Lin PC, Cacioppo JA, Hannon PR, Mahoney MM, Wolfe A, Fernandez-Valdivia R, Lydon JP, Elias CF & Ko C 2016 Loss of fertility in the absence of progesterone receptor expression in kisspeptin neurons of female mice. PLoS ONE e0159534. (https://doi.org/10.1371/journal.pone.0159534)

    • Search Google Scholar
    • Export Citation
  • Haisenleder DJ, Schoenfelder AH, Marcinko ES, Geddis LM & Marshall JC 2011 Estimation of estradiol in mouse serum samples: evaluation of commercial estradiol immunoassays. Endocrinology 44434447. (https://doi.org/10.1210/en.2011-1501)

    • Search Google Scholar
    • Export Citation
  • Higuchi T & Kawakami M 1982 Luteinizing hormone responses to repeated injections of luteinizing hormone releasing hormone in the rat during the oestrous cycle and after ovariectomy with or without oestrogen treatment. Journal of Endocrinology 161168. (https://doi.org/10.1677/joe.0.0930161)

    • Search Google Scholar
    • Export Citation
  • Ho CC, Zhou X, Mishina Y & Bernard DJ 2011 Mechanisms of bone morphogenetic protein 2 (BMP2) stimulated inhibitor of DNA binding 3 (Id3) transcription. Molecular and Cellular Endocrinology 242252. (https://doi.org/10.1016/j.mce.2010.10.019)

    • Search Google Scholar
    • Export Citation
  • Hutchens EG, Ramsey KA, Howard LC, Abshire MY, Patrie JT & McCartney CR 2016 Progesterone has rapid positive feedback actions on LH release but fails to reduce LH pulse frequency within 12 h in estradiol-pretreated women. Physiological Reports e12891. (https://doi.org/10.14814/phy2.12891)

    • Search Google Scholar
    • Export Citation
  • Knox KL & Schwartz NB 1992 RU486 blocks the secondary surge of follicle-stimulating hormone in the rat without blocking the drop in serum inhibin. Biology of Reproduction 220225. (https://doi.org/10.1095/biolreprod46.2.220)

    • Search Google Scholar
    • Export Citation
  • Knox KL, Ringstrom SJ & Schwartz NB 1993 RU486 blocks the effects of inhibin antiserum or luteinizing hormone on the secondary follicle-stimulating hormone surge. Endocrinology 277283. (https://doi.org/10.1210/endo.133.1.8319576)

    • Search Google Scholar
    • Export Citation
  • Lasley BL, Wang CF & Yen SS 1975 The effects of estrogen and progesterone on the functional capacity of the gonadotrophs. Journal of Clinical Endocrinology and Metabolism 820826. (https://doi.org/10.1210/jcem-41-5-820)

    • Search Google Scholar
    • Export Citation
  • Li Y, Schang G, Boehm U, Deng CX, Graff J & Bernard DJ 2017 SMAD3 regulates follicle-stimulating hormone synthesis by pituitary gonadotrope cells in vivo. Journal of Biological Chemistry 23012314. (https://doi.org/10.1074/jbc.M116.759167)

    • Search Google Scholar
    • Export Citation
  • Li Y, Fortin J, Ongaro L, Zhou X, Boehm U, Schneyer A, Bernard DJ & Lin HY 2018a Betaglycan (TGFBR3) functions as an inhibin A, but not inhibin B, coreceptor in pituitary gonadotrope cells in mice. Endocrinology 40774091. (https://doi.org/10.1210/en.2018-00770)

    • Search Google Scholar
    • Export Citation
  • Li Y, Schang G, Wang Y, Zhou X, Levasseur A, Boyer A, Deng CX, Treier M, Boehm U, Boerboom D, et al. 2018b Conditional deletion of FOXL2 and SMAD4 in gonadotropes of adult mice causes isolated FSH deficiency. Endocrinology 26412655. (https://doi.org/10.1210/en.2018-00100)

    • Search Google Scholar
    • Export Citation
  • Livak KJ & Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 402408. (https://doi.org/10.1006/meth.2001.1262)

    • Search Google Scholar
    • Export Citation
  • Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery Jr CA, Shyamala G, Conneely OM & O’Malley BW 1995 Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes and Development 22662278. (https://doi.org/10.1101/gad.9.18.2266)

    • Search Google Scholar
    • Export Citation
  • McGillivray SM, Thackray VG, Coss D & Mellon PL 2007 Activin and glucocorticoids synergistically activate follicle-stimulating hormone beta-subunit gene expression in the immortalized LbetaT2 gonadotrope cell line. Endocrinology 762773. (https://doi.org/10.1210/en.2006-0952)

    • Search Google Scholar
    • Export Citation
  • Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J, Thresher RR, Malinge I, Lomet D, Carlton MB, et al. 2005 Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. PNAS 17611766. (https://doi.org/10.1073/pnas.0409330102)

    • Search Google Scholar
    • Export Citation
  • Pickering AJ & Fink G 1976 Priming effect of luteinizing hormone releasing factor: in-vitro and in-vivo evidence consistent with its dependence upon protein and RNA synthesis. Journal of Endocrinology 373379. (https://doi.org/10.1677/joe.0.0690373)

    • Search Google Scholar
    • Export Citation
  • Roa J, Vigo E, Castellano JM, Gaytan F, Garcia-Galiano D, Navarro VM, Aguilar E, Dijcks FA, Ederveen AG, Pinilla L, et al. 2008a Follicle-stimulating hormone responses to kisspeptin in the female rat at the preovulatory period: modulation by estrogen and progesterone receptors. Endocrinology 57835790. (https://doi.org/10.1210/en.2008-0604)

    • Search Google Scholar
    • Export Citation
  • Roa J, Vigo E, Castellano JM, Gaytan F, Navarro VM, Aguilar E, Dijcks FA, Ederveen AG, Pinilla L, van Noort PI, et al. 2008b Opposite roles of estrogen receptor (ER)-alpha and ERbeta in the modulation of luteinizing hormone responses to kisspeptin in the female rat: implications for the generation of the preovulatory surge. Endocrinology 16271637. (https://doi.org/10.1210/en.2007-1540)

    • Search Google Scholar
    • Export Citation
  • Schauer C, Tong T, Petitjean H, Blum T, Peron S, Mai O, Schmitz F, Boehm U & Leinders-Zufall T 2015 Hypothalamic gonadotropin-releasing hormone (GnRH) receptor neurons fire in synchrony with the female reproductive cycle. Journal of Neurophysiology 10081021. (https://doi.org/10.1152/jn.00357.2015)

    • Search Google Scholar
    • Export Citation
  • Stephens SB, Tolson KP, Rouse Jr ML, Poling MC, Hashimoto-Partyka MK, Mellon PL & Kauffman AS 2015 Absent progesterone signaling in kisspeptin neurons disrupts the LH surge and impairs fertility in female mice. Endocrinology 30913097. (https://doi.org/10.1210/en.2015-1300)

    • Search Google Scholar
    • Export Citation
  • Steyn FJ, Wan Y, Clarkson J, Veldhuis JD, Herbison AE & Chen C 2013 Development of a methodology for and assessment of pulsatile luteinizing hormone secretion in juvenile and adult male mice. Endocrinology 49394945. (https://doi.org/10.1210/en.2013-1502)

    • Search Google Scholar
    • Export Citation
  • Thackray VG & Mellon PL 2008 Synergistic induction of follicle-stimulating hormone beta-subunit gene expression by gonadal steroid hormone receptors and Smad proteins. Endocrinology 10911102. (https://doi.org/10.1210/en.2007-1498)

    • Search Google Scholar
    • Export Citation
  • Thackray VG, McGillivray SM & Mellon PL 2006 Androgens, progestins, and glucocorticoids induce follicle-stimulating hormone beta-subunit gene expression at the level of the gonadotrope. Molecular Endocrinology 20622079. (https://doi.org/10.1210/me.2005-0316)

    • Search Google Scholar
    • Export Citation
  • Turgeon JL & Waring DW 1994 Activation of the progesterone receptor by the gonadotropin-releasing hormone self-priming signaling pathway. Molecular Endocrinology 860869. (https://doi.org/10.1210/mend.8.7.7984148)

    • Search Google Scholar
    • Export Citation
  • Turgeon JL & Waring DW 1999 Androgen modulation of luteinizing hormone secretion by female rat gonadotropes. Endocrinology 17671774. (https://doi.org/10.1210/endo.140.4.6642)

    • Search Google Scholar
    • Export Citation
  • Turgeon JL & Waring DW 2001 Luteinizing hormone secretion from wild-type and progesterone receptor knockout mouse anterior pituitary cells. Endocrinology 31083115. (https://doi.org/10.1210/endo.142.7.8282)

    • Search Google Scholar
    • Export Citation
  • Turgeon MO, Silander TL, Doycheva D, Liao XH, Rigden M, Ongaro L, Zhou X, Joustra SD, Wit JM, Wade MG, et al. 2017 TRH action is impaired in pituitaries of male IGSF1-deficient mice. Endocrinology 815830. (https://doi.org/10.1210/en.2016-1788)

    • Search Google Scholar
    • Export Citation
  • Veldhuis J, Yang R, Roelfsema F & Takahashi P 2016 Proinflammatory cytokine infusion attenuates LH’s feedforward on testosterone secretion: modulation by age. Journal of Clinical Endocrinology and Metabolism 539549. (https://doi.org/10.1210/jc.2015-3611)

    • Search Google Scholar
    • Export Citation
  • Waring DW & Turgeon JL 1980 Luteinizing hormone-releasing hormone-induced luteinizing hormone secretion in vitro: cyclic changes in responsiveness and self-priming. Endocrinology 14301436. (https://doi.org/10.1210/endo-106-5-1430)

    • Search Google Scholar
    • Export Citation
  • Waring DW & Turgeon JL 1992 A pathway for luteinizing hormone releasing-hormone self-potentiation: cross-talk with the progesterone receptor. Endocrinology 32753282. (https://doi.org/10.1210/endo.130.6.1317780)

    • Search Google Scholar
    • Export Citation
  • Wen S, Schwarz JR, Niculescu D, Dinu C, Bauer CK, Hirdes W & Boehm U 2008 Functional characterization of genetically labeled gonadotropes. Endocrinology 27012711. (https://doi.org/10.1210/en.2007-1502)

    • Search Google Scholar
    • Export Citation
  • Wen S, Ai W, Alim Z & Boehm U 2010 Embryonic gonadotropin-releasing hormone signaling is necessary for maturation of the male reproductive axis. PNAS 1637216377. (https://doi.org/10.1073/pnas.1000423107)

    • Search Google Scholar
    • Export Citation
  • Wen S, Gotze IN, Mai O, Schauer C, Leinders-Zufall T & Boehm U 2011 Genetic identification of GnRH receptor neurons: a new model for studying neural circuits underlying reproductive physiology in the mouse brain. Endocrinology 15151526. (https://doi.org/10.1210/en.2010-1208)

    • Search Google Scholar
    • Export Citation
  • Wu S, Chen Y, Fajobi T, DiVall SA, Chang C, Yeh S & Wolfe A 2014 Conditional knockout of the androgen receptor in gonadotropes reveals crucial roles for androgen in gonadotropin synthesis and surge in female mice. Molecular Endocrinology 16701681. (https://doi.org/10.1210/me.2014-1154)

    • Search Google Scholar
    • Export Citation
  • Zhou X, Wang Y, Ongaro L, Boehm U, Kaartinen V, Mishina Y & Bernard DJ 2016 Normal gonadotropin production and fertility in gonadotrope-specific Bmpr1a knockout mice. Journal of Endocrinology 331341. (https://doi.org/10.1530/JOE-16-0053)

    • Search Google Scholar
    • Export Citation