Modulation of hypothalamic S6K1 and S6K2 alters feeding behavior and systemic glucose metabolism

in Journal of Endocrinology

Correspondence should be addressed to F M Simabuco: simabuco@gmail.com
Restricted access

The mTOR/S6Ks signaling is one of the intracellular pathways important for metabolic control, acting both peripherally and centrally. In the hypothalamus, mTOR/S6Ks axis mediates the action of leptin and insulin and can modulate the expression of neuropeptides. We analyzed the role of different S6Ks isoforms in the hypothalamic regulation of metabolism. We observed decreased food intake and decreased expression of agouti-related peptide (AgRP) following intracerebroventricular (icv) injections of adenoviral-mediated overexpression of three different S6Ks isoforms. Moreover, mice overexpressing p70-S6K1 in undefined periventricular hypothalamic neurons presented changes in glucose metabolism, as an increase in gluconeogenesis. To further evaluate the hypothalamic role of a less-studied S6K isoform, p54-S6K2, we used a Cre-LoxP approach to specifically overexpress it in AgRP neurons. Our findings demonstrate the potential participation of S6K2 in AgRP neurons regulating feeding behavior.

 

      Society for Endocrinology

All Time Past Year Past 30 Days
Abstract Views 250 250 115
Full Text Views 39 39 27
PDF Downloads 11 11 7
  • ArmeliniMGMuotriARMarchettoMCNDe Lima-BessaKMSarasinAMenckCFM 2005 Restoring DNA repair capacity of cells from three distinct diseases by XPD gene-recombinant adenovirus. Cancer Gene Therapy 389–396. (https://doi.org/10.1038/sj.cgt.7700797)

    • Search Google Scholar
    • Export Citation
  • BlouetCOnoHSchwartzGJ 2008 Mediobasal hypothalamic P70 S6 kinase 1 modulates the control of energy homeostasis. Cell Metabolism 459–467. (https://doi.org/10.1016/j.cmet.2008.10.004)

    • Search Google Scholar
    • Export Citation
  • BouretSGSimerlyRB 2004 Minireview: leptin and development of hypothalamic feeding circuits. Endocrinology 2621–2626. (https://doi.org/10.1210/en.2004-0231)

    • Search Google Scholar
    • Export Citation
  • CaronALabbéSMLanfrayDBlanchardPGVillotRRoyCSabatiniDMRichardDLaplanteM 2016 Mediobasal hypothalamic overexpression of DEPTOR protects against high-fat diet-induced obesity. Molecular Metabolism 102–112. (https://doi.org/10.1016/j.molmet.2015.11.005)

    • Search Google Scholar
    • Export Citation
  • CotaDMatterEKWoodsSCSeeleyRJ 2008 The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity. Journal of Neuroscience 7202–7208. (https://doi.org/10.1523/JNEUROSCI.1389-08.2008)

    • Search Google Scholar
    • Export Citation
  • CotaDProulxKBlake SmithKAKozmaSCThomasGWoodsSCSeeleyRJ 2006 Hypothalamic mTOR signaling regulates food intake. Science 927–930. (https://doi.org/10.1126/science.1124147)

    • Search Google Scholar
    • Export Citation
  • DoddGTTiganisT 2017 Insulin action in the brain: roles in energy and glucose homeostasis. Journal of Neuroendocrinology 29 e12513. (https://doi.org/10.1111/jne.12513)

    • Search Google Scholar
    • Export Citation
  • HuFXuYLiuF 2016 Hypothalamic roles of mTOR complex I: integration of nutrient and hormone signals to regulate energy homeostasis. American Journal of Physiology. Endocrinology and Metabolism E994–E1002. (https://doi.org/10.1152/ajpendo.00121.2016)

    • Search Google Scholar
    • Export Citation
  • HugheyCCWassermanDHLee-YoungRSLantierL 2014 Approach to assessing determinants of glucose homeostasis in the conscious mouse. Mammalian Genome 522–538. (https://doi.org/10.1007/s00335-014-9533-z)

    • Search Google Scholar
    • Export Citation
  • Ignacio-SouzaLMBombassaroBPascoalLBPortovedoMARazolliDSCoopeAVictorioSCDe MouraRFNascimentoLFArrudaAP, 2014 Defective regulation of the ubiquitin/proteasome system in the hypothalamus of obese male mice. Endocrinology 2831–2844. (https://doi.org/10.1210/en.2014-1090)

    • Search Google Scholar
    • Export Citation
  • JamesWPTRigbyNLeachR 2006 Obesity and the metabolic syndrome: the stress on society. Annals of the New York Academy of Sciences 1–10. (https://doi.org/10.1196/annals.1367.002)

    • Search Google Scholar
    • Export Citation
  • KahnBBMyersMG 2006 mTOR tells the brain that the body is hungry. Nature Medicine 615–617. (https://doi.org/10.1038/nm0606-615)

  • KhamzinaLVeilleuxABergeronSMaretteA 2005 Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 1473–1481. (https://doi.org/10.1210/en.2004-0921)

    • Search Google Scholar
    • Export Citation
  • KönnerACJanoschekRPlumLJordanSDRotherEMaXXuCEnrioriPHampelBBarshGS, 2007 Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metabolism 438–449. (https://doi.org/10.1016/j.cmet.2007.05.004)

    • Search Google Scholar
    • Export Citation
  • KrashesMJLowellBBGarfieldAS 2016 Melanocortin-4 receptor-regulated energy homeostasis. Nature Neuroscience 206–219. (https://doi.org/10.1038/nn.4202)

    • Search Google Scholar
    • Export Citation
  • MutaKMorganDARahmouniK 2015 The role of hypothalamic mTORC1 signaling in insulin regulation of food intake, body weight, and sympathetic nerve activity in male mice. Endocrinology 1398–1407. (https://doi.org/10.1210/en.2014-1660)

    • Search Google Scholar
    • Export Citation
  • MyersMGOlsonDP 2012 Central nervous system control of metabolism. Nature 357–363. (https://doi.org/10.1038/nature11705)

  • NardellaCLunardiAFedeleGClohessyJGAlimontiAKozmaSCThomasGLodaMPandolfiPP 2011 Differential expression of S6K2 dictates tissue-specific requirement for S6K1 in mediating aberrant mTORC1 signaling and tumorigenesis. Cancer Research 3669–3675. (https://doi.org/10.1158/0008-5472.CAN-10-3962)

    • Search Google Scholar
    • Export Citation
  • O’NealTJFriendDMGuoJHallKDKravitzAV 2017 Increases in physical activity result in diminishing increments in daily energy expenditure in mice. Current Biology 423–430. (https://doi.org/10.1016/j.cub.2016.12.009)

    • Search Google Scholar
    • Export Citation
  • OlofssonLEUngerEKCheungCCXuAW 2013 Modulation of AgRP-neuronal function by SOCS3 as an initiating event in diet-induced hypothalamic leptin resistance. PNAS E697–E706. (https://doi.org/10.1073/pnas.1218284110)

    • Search Google Scholar
    • Export Citation
  • OnoHPocaiAWangYSakodaHAsanoTBackerJMSchwartzGJRossettiL 2008 Activation of hypothalamic S6 kinase mediates diet-induced hepatic insulin resistance in rats. Journal of Clinical Investigation 2959–2968. (https://doi.org/10.1172/JCI34277)

    • Search Google Scholar
    • Export Citation
  • PardoOESecklMJ 2013 S6K2: the neglected S6 kinase family member. Frontiers in Oncology 191. (https://doi.org/10.3389/fonc.2013.00191)

  • PavanICBYokooSGranatoDCMeneguelloLCarnielliCMTavaresMRdo AmaralCLde FreitasLBPaes LemeAFLuchessiAD, 2016 Different interactomes for p70-S6K1 and p54-S6K2 revealed by proteomic analysis. Proteomics 2650–2666. (https://doi.org/10.1002/pmic.201500249)

    • Search Google Scholar
    • Export Citation
  • PendeMUmSHMieuletVStickerMGossVLMestanJMuellerMFumagalliSKozmaSCThomasG 2004 S6K1-/-/S6K2-/- mice exhibit perinatal lethality and rapamycin-sensitive 5’-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Molecular and Cellular Biology 3112–3124. (https://doi.org/10.1128/mcb.24.8.3112-3124.2004)

    • Search Google Scholar
    • Export Citation
  • SchneebergerMGomisRClaretM 2014 Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. Journal of Endocrinology T25–T46. (https://doi.org/10.1530/JOE-13-0398)

    • Search Google Scholar
    • Export Citation
  • SmithMAKatsouriLIrvineEEHankirMKPedroniSMAVosholPJGordonMWChoudhuryAIWoodsAVidal-PuigA, 2015 Ribosomal S6K1 in POMC and AgRP neurons regulates glucose homeostasis but not feeding behavior in mice. Cell Reports 335–343. (https://doi.org/10.1016/j.celrep.2015.03.029)

    • Search Google Scholar
    • Export Citation
  • TavaresMRPavanICBAmaralCLMeneguelloLLuchessiADSimabucoFM 2015 The S6K protein family in health and disease. Life Sciences 1–10. (https://doi.org/10.1016/j.lfs.2015.03.001)

    • Search Google Scholar
    • Export Citation
  • TimperKBrüningJC 2017 Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Disease Models & Mechanisms 679–689. (https://doi.org/10.1242/dmm.026609)

    • Search Google Scholar
    • Export Citation
  • TremblayALachanceÉ 2017 Tackling obesity at the community level by integrating healthy diet, movement and non-movement behaviours. Obesity Reviews 18 (Supplement 1) 82–87. (https://doi.org/10.1111/obr.12504)

    • Search Google Scholar
    • Export Citation
  • TremblayFBruleSHee UmSLiYMasudaKRodenMSunXJKrebsMPolakiewiczRDThomasG, 2007 Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. PNAS 14056–14061. (https://doi.org/10.1073/pnas.0706517104)

    • Search Google Scholar
    • Export Citation
  • UmSHFrigerioFWatanabeMPicardFJoaquinMStickerMFumagalliSAllegriniPRKozmaSCAuwerxJ, 2004 Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 200–205. (https://doi.org/10.1038/nature02866)

    • Search Google Scholar
    • Export Citation
  • VillanuevaECMünzbergHCotaDLeshanRLKoppKIshida-TakahashiRJonesJCFingarDCSeeleyRJMyersMG 2009 Complex regulation of mammalian target of rapamycin complex 1 in the basomedial hypothalamus by leptin and nutritional status. Endocrinology 4541–4551. (https://doi.org/10.1210/en.2009-0642)

    • Search Google Scholar
    • Export Citation
  • WardlawSL 2011 Hypothalamic proopiomelanocortin processing and the regulation of energy balance. European Journal of Pharmacology 213–219. (https://doi.org/10.1016/j.ejphar.2010.10.107)

    • Search Google Scholar
    • Export Citation
  • XuJBartolomeCLLowCSYiXChienCHWangPKongD 2018 Genetic identification of leptin neural circuits in energy and glucose homeostases. Nature 505–509. (https://doi.org/10.1038/s41586-018-0049-7)

    • Search Google Scholar
    • Export Citation
  • YangSBTienACBoddupalliGXuAWJanYNJanLY 2012 Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons. Neuron 425–436. (https://doi.org/10.1016/j.neuron.2012.03.043)

    • Search Google Scholar
    • Export Citation
  • ZhangJGaoZYinJQuonMJYeJ 2008 S6K directly phosphorylates IRS-1 on Ser-270 to promote insulin resistance in response to TNF-α signaling through IKK2. Journal of Biological Chemistry 35375–35382. (https://doi.org/10.1074/jbc.M806480200)

    • Search Google Scholar
    • Export Citation