Allopregnanolone reduces neuroendocrine response to acute stressful stimuli in sheep

in Journal of Endocrinology

Correspondence should be addressed to T Misztal: t.misztal@ifzz.pl
Restricted access

The verified hypothesis assumed that centrally administered neurosteroid, allopregnanolone (AL), could affect basal and/or stress-induced activity of the hypothalamic-pituitary-adrenal (HPA) axis in sheep. Four groups (n = 6 each) of luteal-phase sheep were intracerebroventricularly infused for 3 days with a vehicle without stress (control); a vehicle treated with stressful stimuli (isolation and partial movement restriction) on the third day; AL (4 × 15 µg/60 µL/30 min, at 30-min intervals) treated with stressful stimuli, and AL alone. Simultaneously, the push-pull perfusion of the infundibular nucleus/median eminence and plasma sample collection were performed. After the experiment, the sheep were killed to collect the hypothalamic and anterior pituitary (AP) tissues. Stressful stimuli evoked an increase in the expression of corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) mRNA in the hypothalamic paraventricular nucleus (PVN), and AVP receptor (V1b) and proopiomelanocortin (POMC) mRNA in the AP; the concentrations of perfusate CRH, and plasma adrenocorticotropic hormone (ACTH) and cortisol compared to controls. Conversely, the expression of the CRH receptor (CRHR1) mRNA in the AP was downregulated. AL decreased the expression of CRH and AVP mRNA in the PVN, and AVPRV1b and POMC mRNA in the AP in stressed sheep, compared to only stressed ones. There was also a reduction in perfusate CRH, and plasma ACTH and cortisol concentrations. AL alone decreased the expression of CRHR1 mRNA in the AP, and plasma cortisol concentration at the beginning of the collection period compared to controls. In conclusion, AL may function centrally as a suppressor of HPA axis activity in stressed sheep.

 

      Society for Endocrinology

All Time Past Year Past 30 Days
Abstract Views 277 277 277
Full Text Views 19 19 19
PDF Downloads 5 5 5
  • AguileraG 1994 Regulation of pituitary ACTH secretion during chronic stress. Frontiers in Neuroendocrinology 321–350. (https://doi.org/10.1006/frne.1994.1013)

    • Search Google Scholar
    • Export Citation
  • AguileraG 1998 Corticotropin releasing hormone, receptor regulation and the stress response. Trends in Endocrinology and Metabolism 329–336. (https://doi.org/10.1016/S1043-2760(98)00079-4)

    • Search Google Scholar
    • Export Citation
  • AguileraGNikodemovaMWynnPCCattKJ 2004 Corticotropin releasing hormone receptors: two decades later. Peptides 319–329. (https://doi.org/10.1016/j.peptides.2004.02.002)

    • Search Google Scholar
    • Export Citation
  • AutelitanoDJ 1998 Stress-induced stimulation of pituitary POMC gene expression is associated with activation of transcription factor AP-1 in hypothalamus and pituitary. Brain Research Bulletin 75–82. (https://doi.org/10.1016/s0361-9230(97)00303-1)

    • Search Google Scholar
    • Export Citation
  • BarbacciaMLRoscettiGTrabucchiMCucchedduTConcasABiggioG 1994 Neurosteroids in the brain of handling-habituated and naive rats: effect of CO2 inhalation. European Journal of Pharmacology 317–320. (https://doi.org/10.1016/0014-2999(94)90123-6)

    • Search Google Scholar
    • Export Citation
  • BaulieuEE 1991 Neurosteroids: a new function in the brain. Biology of the Cell 3–10. (https://doi.org/10.1016/0248-4900(91)90045-o)

  • BilliardsSSWalkerDWCannyBJHirstJJ 2002 Endotoxin increases sleep and brain allopregnanolone concentrations in newborn lambs. Pediatric Research 892–899. (https://doi.org/10.1203/00006450-200212000-00014)

    • Search Google Scholar
    • Export Citation
  • BoudabaCSzaboKTaskerJG 1996 Physiological mapping of local inhibitory inputs to the hypothalamic paraventricular nucleus. Journal of Neuroscience 7151–7160. (https://doi.org/10.1523/JNEUROSCI.16-22-07151.1996)

    • Search Google Scholar
    • Export Citation
  • BruntonPJ 2015 Programming the brain and behaviour by early-life stress: a focus on neuroactive steroids. Journal of Neuroendocrinology 468–480. (https://doi.org/10.1111/jne.12265)

    • Search Google Scholar
    • Export Citation
  • BruntonPJ 2016 Neuroactive steroids and stress axis regulation: pregnancy and beyond. Journal of Steroid Biochemistry and Molecular Biology 160–168. (https://doi.org/10.1016/j.jsbmb.2015.08.003)

    • Search Google Scholar
    • Export Citation
  • BruntonPJRussellJA 2011 Allopregnanolone and suppressed hypothalamo-pituitary-adrenal axis stress responses in late pregnancy in the rat. Stress 6–12. (https://doi.org/10.3109/10253890.2010.482628)

    • Search Google Scholar
    • Export Citation
  • BruntonPJMcKayAJOchedalskiTPiastowskaARebasELachowiczARussellJA 2009 Central opioid inhibition of neuroendocrine stress responses in pregnancy in the rat is induced by the neurosteroid allopregnanolone. Journal of Neuroscience 6449–6460. (https://doi.org/10.1523/JNEUROSCI.0708-09.2009)

    • Search Google Scholar
    • Export Citation
  • BudziszewskaBZajacABasta-KaimALeśkiewiczMSteczkowskaMLasońWKucińskiM 2010 Effects of neurosteroids on the human corticotropin-releasing hormone gene. Pharmacological Reports 1030–1040. (https://doi.org/10.1016/S1734-1140(10)70365-0)

    • Search Google Scholar
    • Export Citation
  • CiechanowskaMLapotMMalewskiTMateusiakKMisztalTPrzekopF 2009 Effects of GABAA receptor modulation on the expression of GnRH gene and GnRH receptor (GnRH-R) gene in the hypothalamus and GnRH-R gene in the anterior pituitary gland of follicular-phase ewes. Animal Reproduction Science 235–248. (https://doi.org/10.1016/j.anireprosci.2008.03.006)

    • Search Google Scholar
    • Export Citation
  • ColmersPLWBainsJS 2018 Balancing tonic and phasic inhibition in hypothalamic corticotropin-releasing hormone neurons. Journal of Physiology 1919–1929. (https://doi.org/10.1113/JP275588)

    • Search Google Scholar
    • Export Citation
  • CorpechotCYoungJCalvelMWehreyCVeltzJNTouyerGMourenMPrasadVVBannerCSjövallJ 1993 Neurosteroid: 3α-hydroxy-5α-pregnan-20-one and its precursor in the brain, plasma, and steroidogenic glands of male and female rats. Endocrinology 1003–1009. (https://doi.org/10.1210/endo.133.3.8365352)

    • Search Google Scholar
    • Export Citation
  • DecavelCVan den PolAN 1990 GABA: a dominant neurotransmitter in the hypothalamus. Journal of Comparative Neurology 1019–1037. (https://doi.org/10.1002/cne.903020423)

    • Search Google Scholar
    • Export Citation
  • EnglerDPhamTFullertonMJOoiGFunderJWClarkeIJ 1989 Studies of the secretion of corticotropin-releasing factor and arginine vasopressin into the hypophysial-portal circulation of the conscious sheep. I. Effect of an audiovisual stimulus and insulin-induced hypoglycemia. Neuroendocrinology 367–381. (https://doi.org/10.1159/000125141)

    • Search Google Scholar
    • Export Citation
  • FamilariMSmithAISmithRFunderJW 1989 Arginine vasopressin is a much more potent stimulus to ACTH release from ovine anterior pituitary cells than ovine corticotropin releasing factor. 1. In vitro studies. Neuroendocrinology 152–157. (https://doi.org/10.1159/000125214)

    • Search Google Scholar
    • Export Citation
  • GreetfeldMSchmidtMVGaneaKSterlemannVLieblCMüllerMB 2009 A single episode of restraint stress regulates central corticotrophin-releasing hormone receptor expression and binding in specific areas of the mouse brain. Journal of Neuroendocrinology 473–480. (https://doi.org/10.1111/j.1365-2826.2009.01865.x)

    • Search Google Scholar
    • Export Citation
  • GunnBGBrownARLambertJJBelelliD 2011 Neurosteroids and GABA(A) receptor interactions: a focus on stress. Frontiers in Neuroscience 131. (https://doi.org/10.3389/fnins.2011.00131)

    • Search Google Scholar
    • Export Citation
  • GunnBGCunninghamLCooperMACorteenNLSeifiMSwinnyJDLambertJJBelelliD 2013 Dysfunctional astrocytic and synaptic regulation of hypothalamic glutamatergic transmission in a mouse model of early-life adversity: relevance to neurosteroids and programming of the stress response. Journal of Neuroscience 19534–19554. (https://doi.org/10.1523/JNEUROSCI.1337-13.2013)

    • Search Google Scholar
    • Export Citation
  • HasiecMMisztalT 2018 Adaptive modifications of maternal hypothalamic-pituitary-adrenal axis activity during lactation and salsolinol as a new player in this phenomenon. International Journal of Endocrinology Article ID 3786038. (https://doi.org/10.1155/2018/3786038)

    • Search Google Scholar
    • Export Citation
  • HasiecMTomaszewska-ZarembaDMisztalT 2014 Suckling and salsolinol attenuate responsiveness of the hypothalamic-pituitary-adrenal axis to stress: focus on catecholamines, corticotrophin-releasing hormone, adrenocorticotrophic hormone, cortisol and prolactin secretion in lactating sheep. Journal of Neuroendocrinology 844–852. (https://doi.org/10.1111/jne.12222)

    • Search Google Scholar
    • Export Citation
  • HaugerRLMillanMACattKJAguileraG 1987 Differential regulation of brain and pituitary corticotropin releasing factor receptors by corticosterone. Endocrinology 1527–1533. (https://doi.org/10.1210/endo-120-4-1527)

    • Search Google Scholar
    • Export Citation
  • HermanJPMuellerNKFigueiredoH 2004 Role of GABA and glutamate circuitry in hypothalamo-pituitary-adrenocortical stress integration. Annals of the New York Academy of Sciences 35–45. (https://doi.org/10.1196/annals.1296.004)

    • Search Google Scholar
    • Export Citation
  • HewittSAWamsteekerJIKurzEUBainsJS 2009 Altered chloride homeostasis removes synaptic inhibitory constraint of the stress axis. Nature Neuroscience 438–443. (https://doi.org/10.1038/nn.2274)

    • Search Google Scholar
    • Export Citation
  • HirstJJCumberlandALShawJCBennettGAKelleherMAWalkerDWPalliserHK 2016 Loss of neurosteroid-mediated protection following stress during fetal life. Journal of Steroid Biochemistry and Molecular Biology 181–188. (https://doi.org/10.1016/j.jsbmb.2015.09.012)

    • Search Google Scholar
    • Export Citation
  • JasnicNDjordjevicJVujovicPLakicIDjurasevicSCvijicG 2013 The effect of vasopressin 1b receptor (V1bR) blockade on HPA axis activity in rats exposed to acute heat stress. Journal of Experimental Biology 2302–2307. (https://doi.org/10.1242/jeb.082842)

    • Search Google Scholar
    • Export Citation
  • KasagiYHoribaNSakaiKFukudaYSudaT 2002 Involvement of cAMP-response element binding protein in corticotropin-releasing factor (CRF)-induced down-regulation of CRF receptor 1 gene expression in rat anterior pituitary cells. Journal of Neuroendocrinology 587–592. (https://doi.org/10.1046/j.1365-2826.2002.00816.x)

    • Search Google Scholar
    • Export Citation
  • Keller-WoodMEDallmanMF 1984 Corticosteroid inhibition of ACTH secretion. Endocrine Reviews 1–24. (https://doi.org/10.1210/edrv-5-1-1)

  • KimYBColwellCSKimYI 2019 Long-term ionic plasticity of GABAergic signalling in the hypothalamus. Journal of Neuroendocrinology e12753. (https://doi.org/10.1111/jne.12753)

    • Search Google Scholar
    • Export Citation
  • KlenerovaVKvetnanskyRHynieS 2018 The effect of acute and repeated stress on CRH-R1 and CRH-R2 mRNA expression in pituitaries of wild type and CRH knockout mice. Cellular and Molecular Neurobiology 163–169. (https://doi.org/10.1007/s10571-017-0556-3)

    • Search Google Scholar
    • Export Citation
  • KokotFStupnickiR 1985 Radioimmunological and radiocompetitive methods in clinical use [in Polish]. Warsaw, Poland: PZWL.

  • LiuJPRobinsonPJFunderJWEnglerD 1990 The biosynthesis and secretion of adrenocorticotropin by the ovine anterior pituitary is predominantly regulated by arginine vasopressin (AVP). Evidence that protein kinase C mediates the action of AVP. Journal of Biological Chemistry 14136–14142.

    • Search Google Scholar
    • Export Citation
  • McEwenBS 2007 Physiology and neurobiology of stress and adaptation: central role of the brain. Physiological Reviews 873–904. (https://doi.org/10.1152/physrev.00041.2006)

    • Search Google Scholar
    • Export Citation
  • MelcangiRCCelottiFCastanoPMartiniL 1993 Differential localization of the 5 alpha‐reductase and the 3 alpha‐hydroxysteroid dehydrogenase in neuronal and glial cultures. Endocrinology 1252–1259. (https://doi.org/10.1210/endo.132.3.8440186)

    • Search Google Scholar
    • Export Citation
  • MiklosIHKovacsKJ 2002 GABAergic innervation of corticotropin-releasing hormone (CRH)-secreting parvocellular neurons and its plasticity as demonstrated by quantitative immunoelectron microscopy. Neuroscience 581–592. (https://doi.org/10.1016/s0306-4522(02)00147-1)

    • Search Google Scholar
    • Export Citation
  • NicolMBHirstJJWalkerD 1999 Effects of pregnanolone on behavioural parameters and the responses to GABA(A) receptor antagonists in the late gestation fetal sheep. Neuropharmacology 49–63. (https://doi.org/10.1016/s0028-3908(98)00166-x)

    • Search Google Scholar
    • Export Citation
  • NikodemovaMDiehlCRAguileraG 2002 Multiple sites of control of type-1 corticotropin releasing hormone receptor levels in the pituitary. Archives of Physiology and Biochemistry 123–128. (https://doi.org/10.1076/apab.110.1.123.901)

    • Search Google Scholar
    • Export Citation
  • PaulSMPurdyRH 1992 Neuroactive steroids. FASEB Journal 2311–2322. (https://doi.org/10.1096/fasebj.6.6.1347506)

  • PfafflMWHorganGWDempfleL 2002 Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research e36. (https://doi.org/10.1093/nar/30.9.e36)

    • Search Google Scholar
    • Export Citation
  • PfafflMWTichopadAPrgometCNeuviansTP 2004 Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnology Letters 509–515. (https://doi.org/10.1023/B:BILE.0000019559.84305.47)

    • Search Google Scholar
    • Export Citation
  • Plassart-SchiessEBaulieuEE 2001 Neurosteroids: recent findings. Brain Research: Brain Research Reviews 133–140. (https://doi.org/10.1016/S0165-0173(01)00113-8)

    • Search Google Scholar
    • Export Citation
  • PurdyRHMorrowALMoorePHPaulSM 1991 Stress-induced elevations of gamma-aminobutyric acid type A receptor-active steroids in the rat brain. PNAS 4553–4557. (https://doi.org/10.1073/pnas.88.10.4553)

    • Search Google Scholar
    • Export Citation
  • RoperJAO’CarrollAMYoungW3rdLolaitSJ 2011 The vasopressin Avpr1b receptor: molecular and pharmacological studies. Stress 98–115. (https://doi.org/10.3109/10253890.2010.512376)

    • Search Google Scholar
    • Export Citation
  • SarkarJWakefieldSMacKenzieGMossSJMaguireJ 2011 Neurosteroidogenesis is required for the physiological response to stress: role of neurosteroid-sensitive GABAA receptors. Journal of Neuroscience 18198–18210. (https://doi.org/10.1523/JNEUROSCI.2560-11.2011)

    • Search Google Scholar
    • Export Citation
  • StrzetelskiJ 2009 IZ PIB–INRA nutrient requirements for ruminants [in Polish]. Krakow, Poland: Iz PIB Krakow.

  • SzeYGillACBruntonPJ 2018 Sex-dependent changes in neuroactive steroid concentrations in the rat brain following acute swim stress. Journal of Neuroendocrinology e12644. (https://doi.org/10.1111/jne.12644)

    • Search Google Scholar
    • Export Citation
  • TorresJMRuizEOrtegaE 2001 Effects of CRH and ACTH administration on plasma and brain neurosteroid levels. Neurochemical Research 555–558. (https://doi.org/10.1023/a:1010925331768)

    • Search Google Scholar
    • Export Citation
  • TraczykWPrzekopF 1963 Methods of investigation of the function of the hypothalamus and hypophysis in chronic experiments in sheep [in Polish]. Acta Physiologica Polonica 227–236.

    • Search Google Scholar
    • Export Citation
  • VyasSRodriguesAJSilvaJMTroncheFAlmeidaOFXSousaNSotiropoulosI 2016 Chronic stress and glucocorticoids: from neuronal plasticity to neurodegeneration. Neural Plasticity 2016 Article ID 6391686. (https://doi.org/10.1155/2016/6391686)

    • Search Google Scholar
    • Export Citation
  • WelentoJSzteynSMilartZ 1969 Observations on the stereotaxic configuration of the hypothalamus nuclei in the sheep. Anatomischer Anzeiger 1–27.

    • Search Google Scholar
    • Export Citation
  • YawnoTHirstJJCastillo-MelendezMWalkerDW 2009 Role of neurosteroids in regulating cell death and proliferation in the late gestation fetal brain. Neuroscience 838–847. (https://doi.org/10.1016/j.neuroscience.2009.07.009)

    • Search Google Scholar
    • Export Citation
  • YoungSFGriffanteCAguileraG 2007 Dimerization between vasopressin V1b and corticotropin releasing hormone type 1 receptors. Cellular and Molecular Neurobiology 439–461. (https://doi.org/10.1007/s10571-006-9135-8)

    • Search Google Scholar
    • Export Citation
  • ZhengP 2009 Neuroactive steroid regulation of neurotransmitter release in the CNS: action, mechanism and possible significance. Progress in Neurobiology 134–152. (https://doi.org/10.1016/j.pneurobio.2009.07.001)

    • Search Google Scholar
    • Export Citation