Rates of myogenesis and myofiber numbers are reduced in late gestation IUGR fetal sheep

in Journal of Endocrinology
Authors:
Eileen I Chang Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA

Search for other papers by Eileen I Chang in
Current site
Google Scholar
PubMed
Close
,
Paul J Rozance Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA

Search for other papers by Paul J Rozance in
Current site
Google Scholar
PubMed
Close
,
Stephanie R Wesolowski Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA

Search for other papers by Stephanie R Wesolowski in
Current site
Google Scholar
PubMed
Close
,
Leanna M Nguyen Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA

Search for other papers by Leanna M Nguyen in
Current site
Google Scholar
PubMed
Close
,
Steven C Shaw Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA

Search for other papers by Steven C Shaw in
Current site
Google Scholar
PubMed
Close
,
Robert A Sclafani Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA

Search for other papers by Robert A Sclafani in
Current site
Google Scholar
PubMed
Close
,
Kristen K Bjorkman Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA

Search for other papers by Kristen K Bjorkman in
Current site
Google Scholar
PubMed
Close
,
Angela K Peter Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA

Search for other papers by Angela K Peter in
Current site
Google Scholar
PubMed
Close
,
William W Hay Jr Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA

Search for other papers by William W Hay Jr in
Current site
Google Scholar
PubMed
Close
, and
Laura D Brown Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA

Search for other papers by Laura D Brown in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to L D Brown: Laura.Brown@ucdenver.edu
Restricted access
Rent on DeepDyve

Sign up for journal news

Intrauterine growth-restricted (IUGR) fetuses are born with reduced skeletal muscle mass. We hypothesized that reduced rates of myogenesis would contribute to fewer and smaller myofibers in IUGR fetal hindlimb muscle compared to the normally growing fetus. We tested this hypothesis in IUGR fetal sheep with progressive placental insufficiency produced by exposing pregnant ewes to elevated ambient temperatures from 38 to 116 days gestation (dGA; term = 147 dGA). Surgically catheterized control (CON, n = 8) and IUGR (n = 13) fetal sheep were injected with intravenous 5-bromo-2′-deoxyuridine (BrdU) prior to muscle collection (134 dGA). Rates of myogenesis, defined as the combined processes of myoblast proliferation, differentiation, and fusion into myofibers, were determined in biceps femoris (BF), tibialis anterior (TA), and flexor digitorum superficialis (FDS) muscles. Total myofiber number was determined for the entire cross-section of the FDS muscle. In IUGR fetuses, the number of BrdU+ myonuclei per myofiber cross-section was lower in BF, TA, and FDS (P < 0.05), total myonuclear number per myofiber cross-section was lower in BF and FDS (P < 0.05), and total myofiber number was lower in FDS (P < 0.005) compared to CON. mRNA expression levels of cyclins, cyclin-dependent protein kinases, and myogenic regulatory factors were lower (P < 0.05), and inhibitors of the cell cycle were higher (P < 0.05) in IUGR BF compared to CON. Markers of apoptosis were not different in IUGR BF muscle. These results show that in IUGR fetuses, reduced rates of myogenesis produce fewer numbers of myonuclei, which may limit hypertrophic myofiber growth. Fewer myofibers of smaller size contribute to smaller muscle mass in the IUGR fetus.

 

  • Collapse
  • Expand
  • Allen RE, Merkel RA & Young RB 1979 Cellular aspects of muscle growth: myogenic cell proliferation. Journal of Animal Science 115127. (https://doi.org/10.2527/jas1979.491115x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Allen DL, Roy RR & Edgerton VR 1999 Myonuclear domains in muscle adaptation and disease. Muscle and Nerve 13501360. (https://doi.org/10.1002/(sici)1097-4598(199910)22:10<1350::aid-mus3>3.0.co;2-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Amthor H, Otto A, Vulin A, Rochat A, Dumonceaux J, Garcia L, Mouisel E, Hourde C, Macharia R, Friedrichs M, et al.2009 Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cell activity. PNAS 74797484. (https://doi.org/10.1073/pnas.0811129106)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Arroyo JA, Anthony RV & Galan HL 2008 Decreased placental X-linked inhibitor of apoptosis protein in an ovine model of intrauterine growth restriction. American Journal of Obstetrics and Gynecology 80.e180.e8. (https://doi.org/10.1016/j.ajog.2007.12.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Baka S, Malamitsi-Puchner A, Boutsikou T, Boutsikou M, Marmarinos A, Hassiakos D, Gourgiotis D & Briana DD 2015 Cord blood irisin at the extremes of fetal growth. Metabolism: Clinical and Experimental 15151520. (https://doi.org/10.1016/j.metabol.2015.07.020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bell AW, Wilkening RB & Meschia G 1987 Some aspects of placental function in chronically heat-stressed ewes. Journal of Developmental Physiology 1729.

  • Benjamin JS, Culpepper CB, Brown LD, Wesolowski SR, Jonker SS, Davis MA, Limesand SW, Wilkening RB, Hay WW & Rozance PJ 2017 Chronic anemic hypoxemia attenuates glucose-stimulated insulin secretion in fetal sheep. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology R492R500. (https://doi.org/10.1152/ajpregu.00484.2016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Blaauw B & Reggiani C 2014 The role of satellite cells in muscle hypertrophy. Journal of Muscle Research and Cell Motility 310. (https://doi.org/10.1007/s10974-014-9376-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH, Long JZ, et al.2012 A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 463468. (https://doi.org/10.1038/nature10777)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Braun T & Gautel M 2011 Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nature Reviews: Molecular Cell Biology 349361. (https://doi.org/10.1038/nrm3118)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brown LD 2014 Endocrine regulation of fetal skeletal muscle growth: impact on future metabolic health. Journal of Endocrinology R13R29. (https://doi.org/10.1530/JOE-13-0567)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brown LD & Hay WW 2016 Impact of placental insufficiency on fetal skeletal muscle growth. Molecular and Cellular Endocrinology 6977. (https://doi.org/10.1016/j.mce.2016.03.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brown LD, Rozance PJ, Barry JS, Friedman JE & Hay WW 2009 Insulin is required for amino acid stimulation of dual pathways for translational control in skeletal muscle in the late-gestation ovine fetus. American Journal of Physiology: Endocrinology and Metabolism E56E63. (https://doi.org/10.1152/ajpendo.90310.2008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brown LD, Rozance PJ, Thorn SR, Friedman JE & Hay WW 2012 Acute supplementation of amino acids increases net protein accretion in IUGR fetal sheep. American Journal of Physiology: Endocrinology and Metabolism E352E364. (https://doi.org/10.1152/ajpendo.00059.2012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brown LD, Wesolowski SR, Kailey J, Bourque S, Wilson A, Andrews SE, Hay WW & Rozance PJ 2016 Chronic hyperinsulinemia increases myoblast proliferation in fetal sheep skeletal muscle. Endocrinology 24472460. (https://doi.org/10.1210/en.2015-1744)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Caglar M, Goksu M, Isenlik BS, Yavuzcan A, Yilmaz M, Ustun Y, Aydin S & Kumru S 2014 Irisin in idiopathic foetal growth restriction. Journal of Endocrinological Investigation 619624. (https://doi.org/10.1007/s40618-014-0078-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Calvani R, Joseph AM, Adhihetty PJ, Miccheli A, Bossola M, Leeuwenburgh C, Bernabei R & Marzetti E 2013 Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy. Biological Chemistry 393414. (https://doi.org/10.1515/hsz-2012-0247)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chakravarthy MV, Abraha TW, Schwartz RJ, Fiorotto ML & Booth FW 2000 Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3′-kinase/Akt signaling pathway. Journal of Biological Chemistry 3594235952. (https://doi.org/10.1074/jbc.M005832200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Du M, Tong J, Zhao J, Underwood KR, Zhu M, Ford SP & Nathanielsz PW 2010 Fetal programming of skeletal muscle development in ruminant animals. Journal of Animal Science E51E60. (https://doi.org/10.2527/jas.2009-2311)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dungan CM, Murach KA, Frick KK, Jones SR, Crow SE, Englund DA, Vechetti IJ, Figueiredo VC, Levitan BM, Satin J, et al.2019 Elevated myonuclear density during skeletal muscle hypertrophy in response to training is reversed during detraining. American Journal of Physiology: Cell Physiology C649C654. (https://doi.org/10.1152/ajpcell.00050.2019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dwyer CM & Stickland NC 1992 Does the anatomical location of a muscle affect the influence of undernutrition on muscle fibre number? Journal of Anatomy 373376.

  • Dwyer CM, Madgwick AJ, Ward SS & Stickland NC 1995 Effect of maternal undernutrition in early gestation on the development of fetal myofibres in the guinea-pig. Reproduction, Fertility, and Development 12851292. (https://doi.org/10.1071/rd9951285)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Egner IM, Bruusgaard JC & Gundersen K 2016 Satellite cell depletion prevents fiber hypertrophy in skeletal muscle. Development 28982906. (https://doi.org/10.1242/dev.134411)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fahey AJ, Brameld JM, Parr T & Buttery PJ 2005a The effect of maternal undernutrition before muscle differentiation on the muscle fiber development of the newborn lamb. Journal of Animal Science 25642571. (https://doi.org/10.2527/2005.83112564x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fahey AJ, Brameld JM, Parr T & Buttery PJ 2005b Ontogeny of factors associated with proliferation and differentiation of muscle in the ovine fetus. Journal of Animal Science 23302338. (https://doi.org/10.2527/2005.83102330x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Figueras F, Savchev S, Triunfo S, Crovetto F & Gratacos E 2015 An integrated model with classification criteria to predict small-for-gestational-age fetuses at risk of adverse perinatal outcome. Ultrasound in Obstetrics and Gynecology 279285. (https://doi.org/10.1002/uog.14714)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Galan HL, Hussey MJ, Barbera A, Ferrazzi E, Chung M, Hobbins JC & Battaglia FC 1999 Relationship of fetal growth to duration of heat stress in an ovine model of placental insufficiency. American Journal of Obstetrics and Gynecology 12781282. (https://doi.org/10.1016/s0002-9378(99)70629-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gokulakrishnan G, Chang X, Fleischmann R & Fiorotto ML 2017 Precocious glucocorticoid exposure reduces skeletal muscle satellite cells in the fetal rat. Journal of Endocrinology 561572. (https://doi.org/10.1530/JOE-16-0372)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Greenwood PL, Slepetis RM, Bell AW & Hermanson JW 1999a Intrauterine growth retardation is associated with reduced cell cycle activity, but not myofibre number, in ovine fetal muscle. Reproduction, Fertility and Development 281291. (https://doi.org/10.1071/RD99054)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Greenwood PL, Slepetis RM, Hermanson JW & Bell AW 1999b An ultrasound-guided procedure to administer a label of DNA synthesis into fetal sheep. Reproduction, Fertility, and Development 303307. (https://doi.org/10.1071/rd99053)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Greenwood PL, Hunt AS, Hermanson JW & Bell AW 2000 Effects of birth weight and postnatal nutrition on neonatal sheep: II. Skeletal muscle growth and development. Journal of Animal Science 5061. (https://doi.org/10.2527/2000.78150x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guo K, Wang J, Andres V, Smith RC & Walsh K 1995 MyoD-induced expression of p21 inhibits cyclin-dependent kinase activity upon myocyte terminal differentiation. Molecular and Cellular Biology 38233829. (https://doi.org/10.1128/mcb.15.7.3823)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hancock A, Priester C, Kidder E & Keith JR 2009 Does 5-bromo-2′-deoxyuridine (BrdU) disrupt cell proliferation and neuronal maturation in the adult rat hippocampus in vivo? Behavioural Brain Research 218221. (https://doi.org/10.1016/j.bbr.2008.11.050)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Herdrich BJ, Danzer E, Davey MG, Allukian M, Englefield V, Gorman JH 3rd, Gorman RC & Liechty KW 2010 Regenerative healing following foetal myocardial infarction. European Journal of Cardio-Thoracic Surgery 691698. (https://doi.org/10.1016/j.ejcts.2010.03.049)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Joung KE, Park KH, Filippaios A, Dincer F, Christou H & Mantzoros CS 2015 Cord blood irisin levels are positively correlated with birth weight in newborn infants. Metabolism: Clinical and Experimental 15071514. (https://doi.org/10.1016/j.metabol.2015.07.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jung YS, Qian Y & Chen X 2010 Examination of the expanding pathways for the regulation of p21 expression and activity. Cellular Signalling 10031012. (https://doi.org/10.1016/j.cellsig.2010.01.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Karimian A, Ahmadi Y & Yousefi B 2016 Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair 6371. (https://doi.org/10.1016/j.dnarep.2016.04.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lawlor MA & Rotwein P 2000 Insulin-like growth factor-mediated muscle cell survival: central roles for Akt and cyclin-dependent kinase inhibitor p21. Molecular and Cellular Biology 89838995. (https://doi.org/10.1128/mcb.20.23.8983-8995.2000)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lawson-Smith MJ & McGeachie JK 1998 The identification of myogenic cells in skeletal muscle, with emphasis on the use of tritiated thymidine autoradiography and desmin antibodies. Journal of Anatomy 161171. (https://doi.org/10.1046/j.1469-7580.1998.19220161.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee AS, Harris J, Bate M, Vijayraghavan K, Fisher L, Tajbakhsh S & Duxson M 2013 Initiation of primary myogenesis in amniote limb muscles. Developmental Dynamics 10431055. (https://doi.org/10.1002/dvdy.23998)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Limesand SW & Rozance PJ 2017 Fetal adaptations in insulin secretion result from high catecholamines during placental insufficiency. Journal of Physiology 51035113. (https://doi.org/10.1113/JP273324)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu JP, Baker J, Perkins AS, Robertson EJ & Efstratiadis A 1993 Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 5972. (https://doi.org/10.1016/S0092-8674(05)80084-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moss FP & Leblond CP 1971 Satellite cells as the source of nuclei in muscles of growing rats. Anatomical Record 421435. (https://doi.org/10.1002/ar.1091700405)

  • Padoan A, Rigano S, Ferrazzi E, Beaty BL, Battaglia FC & Galan HL 2004 Differences in fat and lean mass proportions in normal and growth-restricted fetuses. American Journal of Obstetrics and Gynecology 14591464. (https://doi.org/10.1016/j.ajog.2004.06.045)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Petrella JK, Kim JS, Cross JM, Kosek DJ & Bamman MM 2006 Efficacy of myonuclear addition may explain differential myofiber growth among resistance-trained young and older men and women. American Journal of Physiology: Endocrinology and Metabolism E937E946. (https://doi.org/10.1152/ajpendo.00190.2006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Powell-Braxton L, Hollingshead P, Warburton C, Dowd M, Pitts-Meek S, Dalton D, Gillett N & Stewart TA 1993 IGF-I is required for normal embryonic growth in mice. Genes and Development 26092617. (https://doi.org/10.1101/gad.7.12b.2609)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Prakash YS, Fournier M & Sieck GC 1993 Effects of prenatal undernutrition on developing rat diaphragm. Journal of Applied Physiology 10441052. (https://doi.org/10.1152/jappl.1993.75.3.1044)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Reza MM, Subramaniyam N, Sim CM, Ge X, Sathiakumar D, McFarlane C, Sharma M & Kambadur R 2017 Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy. Nature Communications 1104. (https://doi.org/10.1038/s41467-017-01131-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rhoads RP, Baumgard LH, El-Kadi SW & Zhao LD 2016 PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: Roles for insulin-supported skeletal muscle growth. Journal of Animal Science 17911802. (https://doi.org/10.2527/jas.2015-0110)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rosenthal SM & Cheng ZQ 1995 Opposing early and late effects of insulin-like growth factor I on differentiation and the cell cycle regulatory retinoblastoma protein in skeletal myoblasts. PNAS 1030710311. (https://doi.org/10.1073/pnas.92.22.10307)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rowe RW & Goldspink G 1969 Muscle fibre growth in five different muscles in both sexes of mice. Journal of Anatomy 519530.

  • Rozance PJ, Zastoupil L, Wesolowski SR, Goldstrohm DA, Strahan B, Cree-Green M, Sheffield-Moore M, Meschia G, Hay WW, Wilkening RB, et al.2018 Skeletal muscle protein accretion rates and hindlimb growth are reduced in late gestation intrauterine growth-restricted fetal sheep. Journal of Physiology 6782. (https://doi.org/10.1113/JP275230)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sampath SC, Sampath SC & Millay DP 2018 Myoblast fusion confusion: the resolution begins. Skeletal Muscle 3. (https://doi.org/10.1186/s13395-017-0149-3)

  • Savchev S, Figueras F, Sanz-Cortes M, Cruz-Lemini M, Triunfo S, Botet F & Gratacos E 2014 Evaluation of an optimal gestational age cut-off for the definition of early- and late-onset fetal growth restriction. Fetal Diagnosis and Therapy 99105. (https://doi.org/10.1159/000355525)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sekerkova G, Ilijic E & Mugnaini E 2004 Bromodeoxyuridine administered during neurogenesis of the projection neurons causes cerebellar defects in rat. Journal of Comparative Neurology 221239. (https://doi.org/10.1002/cne.11016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shah B, Hyde-Dunn J & Jones GE 1997 Proliferation of murine myoblasts as measured by bromodeoxyuridine incorporation. Methods in Molecular Biology 349355. (https://doi.org/10.1385/0-89603-441-0:349)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Siu PM 2009 Muscle apoptotic response to denervation, disuse, and aging. Medicine and Science in Sports and Exercise 18761886. (https://doi.org/10.1249/MSS.0b013e3181a6470b)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Snijders T, Smeets JS, Van Kranenburg J, Kies AK, Van Loon LJ & Verdijk LB 2016 Changes in myonuclear domain size do not precede muscle hypertrophy during prolonged resistance-type exercise training. Acta Physiologica 231239. (https://doi.org/10.1111/apha.12609)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Soto SM, Blake AC, Wesolowski SR, Rozance PJ, Barthel KB, Gao B, Hetrick B, Mccurdy CE, Garza NG, Hay WW, et al.2017 Myoblast replication is reduced in the IUGR fetus despite maintained proliferative capacity in vitro. Journal of Endocrinology 475491. (https://doi.org/10.1530/JOE-16-0123)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taupin P 2007 BrdU immunohistochemistry for studying adult neurogenesis: paradigms, pitfalls, limitations, and validation. Brain Research Reviews 198214. (https://doi.org/10.1016/j.brainresrev.2006.08.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ten Broek RW, Grefte S & Von Den Hoff JW 2010 Regulatory factors and cell populations involved in skeletal muscle regeneration. Journal of Cellular Physiology 716. (https://doi.org/10.1002/jcp.22127)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wallace JM, Milne JS, Aitken RP, Horgan GW & Adam CL 2018 Ovine prenatal growth restriction impacts glucose metabolism and body composition throughout life in both sexes. Reproduction 103119. (https://doi.org/10.1530/REP-18-0048)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • White RB, Bierinx AS, Gnocchi VF & Zammit PS 2010 Dynamics of muscle fibre growth during postnatal mouse development. BMC Developmental Biology 21. (https://doi.org/10.1186/1471-213X-10-21)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Widdowson EM, Crabb DE & Milner RD 1972 Cellular development of some human organs before birth. Archives of Disease in Childhood 652655. (https://doi.org/10.1136/adc.47.254.652)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wigmore PM & Stickland NC 1983 Muscle development in large and small pig fetuses. Journal of Anatomy 235245.

  • Wilson SJ, Ross JJ & Harris AJ 1988 A critical period for formation of secondary myotubes defined by prenatal undernourishment in rats. Development 815821.

  • Yates DT, Clarke DS, Macko AR, Anderson MJ, Shelton LA, Nearing M, Allen RE, Rhoads RP & Limesand SW 2014 Myoblasts from intrauterine growth-restricted sheep fetuses exhibit intrinsic deficiencies in proliferation that contribute to smaller semitendinosus myofibres. Journal of Physiology 31133125. (https://doi.org/10.1113/jphysiol.2014.272591)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yates DT, Cadaret CN, Beede KA, Riley HE, Macko AR, Anderson MJ, Camacho LE & Limesand SW 2016 Intrauterine growth-restricted sheep fetuses exhibit smaller hindlimb muscle fibers and lower proportions of insulin-sensitive Type I fibers near term. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology R1020R1029. (https://doi.org/10.1152/ajpregu.00528.2015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu M, Wang H, Xu Y, Yu D, Li D, Liu X & Du W 2015 Insulin-like growth factor-1 (IGF-1) promotes myoblast proliferation and skeletal muscle growth of embryonic chickens via the PI3K/Akt signalling pathway. Cell Biology International 910922. (https://doi.org/10.1002/cbin.10466)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhu MJ, Ford SP, Nathanielsz PW & Du M 2004 Effect of maternal nutrient restriction in sheep on the development of fetal skeletal muscle. Biology of Reproduction 19681973. (https://doi.org/10.1095/biolreprod.104.034561)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhu MJ, Ford SP, Means WJ, Hess BW, Nathanielsz PW & Du M 2006 Maternal nutrient restriction affects properties of skeletal muscle in offspring. Journal of Physiology 241250. (https://doi.org/10.1113/jphysiol.2006.112110)

    • PubMed
    • Search Google Scholar
    • Export Citation