Elucidating the role of pigment epithelium-derived factor (PEDF) in metabolic PCOS models

in Journal of Endocrinology

Correspondence should be addressed to R Shalgi: shalgir@tauex.tau.ac.il
Restricted access

PCOS is the most common endocrinopathy in women; associated with obesity and insulin resistance (IR). IR leads to accumulation of advanced-glycation-end-products (AGEs) and their receptor, RAGE. PCOS patients have increased levels of vascular endothelial growth factor (VEGF), interleukin 6/8 (IL-6/8) and anti-Mϋllerian-hormone (AMH). PEDF is a secreted-glycoprotein known for its anti-angiogenic and anti-inflammatory properties. We aimed to elucidate the role of PEDF in the pathogenesis and treatment of PCOS. We used a prenatal PCOS mouse model and fed the female offspring a high-fat diet, inducing metabolic PCOS (met.PCOS) characteristics. Female offspring were divided into three groups: control; met.PCOS; met.PCOS + recombinant PEDF (rPEDF). Met.PCOS mice gained more weight, had elevated serum IL-6 and higher mRNA levels of AMH, PEDF and RAGE in their granulosa cells (GCs) than met.PCOS + rPEDF mice. An in vitro Met.PCOS model in human GCs (KGN) line was induced by prolonged incubation with insulin/AGEs, causing development of IR. Under the same conditions, we observed an elevation of VEGF, IL-6/8 mRNAs, concomitantly with an increase in PEDF mRNA, intracellular protein levels, and an elevation of PEDF receptors (PEDF-Rs) mRNA and protein. Simultaneously, a reduction in the secretion of PEDF from GCs, was measured in the medium. The addition of rPEDF (5 nM) activated P38 signaling, implying that PEDF-Rs maintained functionality, and negated AGE-induced elevation of IL-6/8 and VEGF mRNAs. Decreased PEDF secretion may be a major contributor to hyperangiogenesis and chronic inflammation, which lie at the core of PCOS pathogenesis. rPEDF treatment may restore physiological angiogenesis inflammatory balance, thus suggesting a potential therapeutic role in PCOS.

 

      Society for Endocrinology

All Time Past Year Past 30 Days
Abstract Views 601 601 279
Full Text Views 35 35 24
PDF Downloads 27 27 20
  • AgrawalRJacobsHPayneNConwayG 2002 Concentration of vascular endothelial growth factor released by cultured human luteinized granulosa cells is higher in women with polycystic ovaries than in women with normal ovaries. Fertility and Sterility 11641169. (https://doi.org/10.1016/S0015-0282(02)04242-5)

    • Search Google Scholar
    • Export Citation
  • Alvarez-LlamasGSzalowskaEde VriesMPWeeningDLandmanKHoekAWolffenbuttelBHRRoelofsenHVonkRJ 2007 Characterization of the human visceral adipose tissue secretome. Molecular and Cellular Proteomics 589600. (https://doi.org/10.1074/mcp.M600265-MCP200)

    • Search Google Scholar
    • Export Citation
  • AngeloLSKurzrockR 2007 Vascular endothelial growth factor and its relationship to inflammatory mediators. Clinical Cancer Research 28252830. (https://doi.org/10.1158/1078-0432.CCR-06-2416)

    • Search Google Scholar
    • Export Citation
  • ArtimaniTKarimiJMehdizadehMYavangiMKhanlarzadehEGhorbaniMAsadiSKheiripourN 2018 Evaluation of pro-oxidant-antioxidant balance (PAB) and its association with inflammatory cytokines in polycystic ovary syndrome (PCOS). Gynecological Endocrinology 148152. (https://doi.org/10.1080/09513590.2017.1371691)

    • Search Google Scholar
    • Export Citation
  • ArtiniPGRuggieroMParisen ToldinMRMonteleonePMontiMCelaVGenazzaniAR 2009 Vascular endothelial growth factor and its soluble receptor in patients with polycystic ovary syndrome undergoing IVF. Human Fertility 4044. (https://doi.org/10.1080/14647270802621358)

    • Search Google Scholar
    • Export Citation
  • AzzizRCarminaEChenZDunaifALavenJSELegroRSLiznevaDNatterson-HorowtizBTeedeHJYildizBO 2016 Polycystic ovary syndrome. Nature Reviews: Disease Primers 16057. (https://doi.org/10.1038/nrdp.2016.57)

    • Search Google Scholar
    • Export Citation
  • Bar-JosephHBen-AmiIRon-ElRShalgiRChuderlandD 2014 Pigment epithelium-derived factor exerts antioxidative effects in granulosa cells. Fertility and Sterility 891.e3898.e3. (https://doi.org/10.1016/j.fertnstert.2014.06.012)

    • Search Google Scholar
    • Export Citation
  • Bar-JosephHBen-AmiIRon-ElRShalgiRChuderlandD 2016 Pigment epithelium-derived factor regulation by human chorionic gonadotropin in granulosa cells. Reproduction 179185. (https://doi.org/10.1530/REP-15-0478)

    • Search Google Scholar
    • Export Citation
  • CaiJParrCWatkinsGJiangWGBoultonM 2006 Decreased pigment epithelium-derived factor expression in human breast cancer progression. Clinical Cancer Research 35103517. (https://doi.org/10.1158/1078-0432.CCR-06-0094)

    • Search Google Scholar
    • Export Citation
  • CaladoSMAlvesLSSimãoSSilvaGA 2016 GLUT1 activity contributes to the impairment of PEDF secretion by the RPE. Molecular Vision 761770.

    • Search Google Scholar
    • Export Citation
  • CassarSMissoMLHopkinsWGShawCSTeedeHJSteptoNK 2016 Insulin resistance in polycystic ovary syndrome: a systematic review and meta-analysis of euglycaemic-hyperinsulinaemic clamp studies. Human Reproduction 26192631. (https://doi.org/10.1093/humrep/dew243)

    • Search Google Scholar
    • Export Citation
  • ChenCCLeeTYLeuYLWangSH 2019 Pigment epithelium-derived factor inhibits adipogenesis in 3T3-L1 adipocytes and protects against high-fat diet-induced obesity and metabolic disorders in mice. Translational Research 2642. (https://doi.org/10.1016/j.trsl.2019.04.006)

    • Search Google Scholar
    • Export Citation
  • ChuderlandDBen-AmiIKaplan-KraicerRGrossmanHRon-ElRShalgiR 2013a The role of pigment epithelium-derived factor in the pathophysiology and treatment of ovarian hyperstimulation syndrome in mice. Journal of Clinical Endocrinology and Metabolism E258E266. (https://doi.org/10.1210/jc.2012-3037)

    • Search Google Scholar
    • Export Citation
  • ChuderlandDBen-AmiIKaplan-KraicerRGrossmanHKomskyASatchi-FainaroREldar-BoockARon-ElRShalgiR 2013b Hormonal regulation of pigment epithelium-derived factor (PEDF) in granulosa cells. Molecular Human Reproduction 7281. (https://doi.org/10.1093/molehr/gas046)

    • Search Google Scholar
    • Export Citation
  • ChuderlandDHaskyNBen-AmiIKaplan-KraicerRGrossmanHShalgiR 2013c A physiological approach for treating endometriosis by recombinant pigment epithelium-derived factor (PEDF). Human Reproduction 16261634. (https://doi.org/10.1093/humrep/det027)

    • Search Google Scholar
    • Export Citation
  • ChuderlandDBen-AmiIBar-JosephHShalgiR 2014 Role of pigment epithelium-derived factor in the reproductive system. Reproduction R53R61. (https://doi.org/10.1530/REP-14-0251)

    • Search Google Scholar
    • Export Citation
  • DaubriacJPandyaUMHuangKTPavlidesSCGamaPBlankSVShuklaPCrawfordSEGoldLI 2017 Hormonal and growth regulation of epithelial and stromal cells From the normal and malignant endometrium by pigment epithelium-derived factor. Endocrinology 27542773. (https://doi.org/10.1210/en.2017-00028)

    • Search Google Scholar
    • Export Citation
  • Delgado-RosasFGaytanMMoralesCGomezRGaytanF 2009 Superficial ovarian cortex vascularization is inversely related to the follicle reserve in normal cycling ovaries and is increased in polycystic ovary syndrome. Human Reproduction 11421151. (https://doi.org/10.1093/humrep/dep008)

    • Search Google Scholar
    • Export Citation
  • DeligeoroglouEVrachnisNAthanasopoulosNIliodromitiZSifakisSIliodromitiSSiristatidisCCreatsasG 2012 Mediators of chronic inflammation in polycystic ovarian syndrome. Gynecological Endocrinology 974978. (https://doi.org/10.3109/09513590.2012.683082)

    • Search Google Scholar
    • Export Citation
  • DeUgarteCMBartolucciAAAzzizR 2005 Prevalence of insulin resistance in the polycystic ovary syndrome using the homeostasis model assessment. Fertility and Sterility 14541460. (https://doi.org/10.1016/j.fertnstert.2004.11.070)

    • Search Google Scholar
    • Export Citation
  • DewaillyDRobinGPeigneMDecanterCPignyPCatteau-JonardS 2016 Interactions between androgens, FSH, anti-Mullerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Human Reproduction Update 709724. (https://doi.org/10.1093/humupd/dmw027)

    • Search Google Scholar
    • Export Citation
  • Di PietroMPascualiNParborellFAbramovichD 2018 Ovarian angiogenesis in polycystic ovary syndrome. Reproduction R199R209. (https://doi.org/10.1530/REP-17-0597)

    • Search Google Scholar
    • Export Citation
  • Diamanti-KandarakisEChristakouCMarinakisE 2012 Phenotypes and enviromental factors: their influence in PCOS. Current Pharmaceutical Design 270282. (https://doi.org/10.2174/138161212799040457)

    • Search Google Scholar
    • Export Citation
  • DurlingerALGruijtersMJKramerPKarelsBKumarTRMatzukMMRoseUMde JongFHUilenbroekJTGrootegoedJA 2001 Anti-Müllerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology 48914899. (https://doi.org/10.1210/endo.142.11.8486)

    • Search Google Scholar
    • Export Citation
  • FranksSMasonHWillisD 2000 Follicular dynamics in the polycystic ovary syndrome. Molecular and Cellular Endocrinology 4952. (https://doi.org/10.1016/S0303-7207(99)00239-7)

    • Search Google Scholar
    • Export Citation
  • FriedmanEA 1999 Advanced glycosylated end products and hyperglycemia in the pathogenesis of diabetic complications. Diabetes Care (Supplement 2) B65B71.

    • Search Google Scholar
    • Export Citation
  • GoodarziMODumesicDAChazenbalkGAzzizR 2011 Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nature Reviews: Endocrinology 219231. (https://doi.org/10.1038/nrendo.2010.217)

    • Search Google Scholar
    • Export Citation
  • HøjlundKGlintborgDAndersenNRBirkJBTreebakJTFrøsigCBeck-NielsenHWojtaszewskiJFP 2008 Impaired insulin-stimulated phosphorylation of Akt and AS160 in skeletal muscle of women with polycystic ovary syndrome is reversed by pioglitazone treatment. Diabetes 357366. (https://doi.org/10.2337/db07-0706)

    • Search Google Scholar
    • Export Citation
  • IshibashiYMatsuiTOhtaKTanoueRTakeuchiMAsanumaKFukamiKOkudaSNakamuraKYamagishiS 2013 PEDF inhibits AGE-induced podocyte apoptosis via PPAR-gamma activation. Microvascular Research 5458. (https://doi.org/10.1016/j.mvr.2012.10.007)

    • Search Google Scholar
    • Export Citation
  • IwaseAGotoMHarataTTakigawaSNakaharaTSuzukiKManabeSKikkawaF 2009 Insulin attenuates the insulin-like growth factor-I (IGF-I)-Akt pathway, not IGF-I-extracellularly regulated kinase pathway, in luteinized granulosa cells with an increase in PTEN. Journal of Clinical Endocrinology and Metabolism 21842191. (https://doi.org/10.1210/jc.2008-1948)

    • Search Google Scholar
    • Export Citation
  • KarakasSE 2017 New biomarkers for diagnosis and management of polycystic ovary syndrome. Clinica Chimica Acta 248253. (https://doi.org/10.1016/j.cca.2017.06.009)

    • Search Google Scholar
    • Export Citation
  • LaiHJiaXYuQZhangCQiaoJGuanYKangJ 2014 High-fat diet induces significant metabolic disorders in a mouse model of polycystic ovary syndrome. Biology of Reproduction 127127. (https://doi.org/10.1095/biolreprod.114.120063)

    • Search Google Scholar
    • Export Citation
  • LandsmanLParentAHebrokM 2011 Elevated Hedgehog/Gli signaling causes β-cell dedifferentiation in mice. PNAS 1701017015. (https://doi.org/10.1073/pnas.1105404108)

    • Search Google Scholar
    • Export Citation
  • LoeglJNussbaumerEHidenUMajali-MartinezAGhaffari-Tabrizi-WizyNCviticSLangIDesoyeGHuppertzB 2016 Pigment epithelium-derived factor (PEDF): a novel trophoblast-derived factor limiting feto-placental angiogenesis in late pregnancy. Angiogenesis 373388. (https://doi.org/10.1007/s10456-016-9513-x)

    • Search Google Scholar
    • Export Citation
  • MaedaSMatsuiTTakeuchiMYoshidaYYamakawaRFukamiKYamagishiS 2011 Pigment epithelium-derived factor (PEDF) inhibits proximal tubular cell injury in early diabetic nephropathy by suppressing advanced glycation end products (AGEs)-receptor (RAGE) axis. Pharmacological Research 241248. (https://doi.org/10.1016/j.phrs.2010.11.008)

    • Search Google Scholar
    • Export Citation
  • MillerIChuderlandDRon-ElRShalgiRBen-AmiI 2015 GnRH agonist triggering modulates PEDF to VEGF ratio inversely to hCG in granulosa cells. Journal of Clinical Endocrinology and Metabolism E1428E1436. (https://doi.org/10.1210/jc.2015-2312)

    • Search Google Scholar
    • Export Citation
  • MillerIChuderlandDGrossmanHRon-ElRBen-AmiIShalgiR 2016 The dual role of PEDF in the pathogenesis of OHSS: negating both angiogenic and inflammatory pathways. Journal of Clinical Endocrinology and Metabolism 46994709. (https://doi.org/10.1210/jc.2016-1744)

    • Search Google Scholar
    • Export Citation
  • NandiAChenZPatelRPoretskyL 2014 Polycystic ovary syndrome. Endocrinology and Metabolism Clinics of North America 123147. (https://doi.org/10.1016/j.ecl.2013.10.003)

    • Search Google Scholar
    • Export Citation
  • NishiYYanaseTMuYObaKIchinoISaitoMNomuraMMukasaCOkabeTGotoK 2001 Establishment and characterization of a steroidogenic human granulosa-like tumor cell line, KGN, that expresses functional follicle-stimulating hormone receptor. Endocrinology 437445. (https://doi.org/10.1210/endo.142.1.7862)

    • Search Google Scholar
    • Export Citation
  • NonakaKKajiuraYBandoMSakamotoEInagakiYLewJHNaruishiKIkutaTYoshidaKKobayashiT 2017 Advanced glycation end-products increase IL-6 and ICAM-1 expression via RAGE, MAPK and NF-κB pathways in human gingival fibroblasts. Journal of Periodontal Research 334344. (https://doi.org/10.1111/jre.12518)

    • Search Google Scholar
    • Export Citation
  • PengZSunYLvXZhangHLiuCDaiS 2016 Interleukin-6 levels in women with polycystic ovary syndrome: a systematic review and meta-analysis. PLoS ONE e0148531. (https://doi.org/10.1371/journal.pone.0148531)

    • Search Google Scholar
    • Export Citation
  • Pertynska-MarczewskaMDiamanti-KandarakisEZhangJMerhiZ 2015 Advanced glycation end products: a link between metabolic and endothelial dysfunction in polycystic ovary syndrome? Metabolism: Clinical and Experimental 15641573. (https://doi.org/10.1016/j.metabol.2015.08.010)

    • Search Google Scholar
    • Export Citation
  • RepaciAGambineriAPasqualiR 2011 The role of low-grade inflammation in the polycystic ovary syndrome. Molecular and Cellular Endocrinology 3041. (https://doi.org/10.1016/j.mce.2010.08.002)

    • Search Google Scholar
    • Export Citation
  • RolandAVNunemakerCSKellerSRMoenterSM 2010 Prenatal androgen exposure programs metabolic dysfunction in female mice. Journal of Endocrinology 213223. (https://doi.org/10.1677/JOE-10-0217)

    • Search Google Scholar
    • Export Citation
  • SathyapalanTAl-QaissiAKilpatrickESDarghamSRAtkinSL 2018 Anti-Müllerian hormone measurement for the diagnosis of polycystic ovary syndrome. Clinical Endocrinology 258262. (https://doi.org/10.1111/cen.13517)

    • Search Google Scholar
    • Export Citation
  • SchmidtJWeijdegårdBMikkelsenALLindenbergSNilssonLBrännströmM 2014 Differential expression of inflammation related genes in the ovarian stroma and granulosa cells of PCOS women. Molecular Human Reproduction 4958. (https://doi.org/10.1093/molehr/gat051)

    • Search Google Scholar
    • Export Citation
  • SekiRYamagishiSMatsuiTYoshidaTTorimuraTUenoTSataMOkamuraT 2013 Pigment epithelium-derived factor (PEDF) inhibits survival and proliferation of VEGF-exposed multiple myeloma cells through its anti-oxidative properties. Biochemical and Biophysical Research Communications 693697. (https://doi.org/10.1016/j.bbrc.2013.01.057)

    • Search Google Scholar
    • Export Citation
  • ShaoHSchvartzIShaltielS 2003 Secretion of pigment epithelium-derived factor mutagenic study. European Journal of Biochemistry 822831. (https://doi.org/10.1046/j.1432-1033.2003.03374.x)

    • Search Google Scholar
    • Export Citation
  • ShorakaeSTeedeHde CourtenBLambertGBoyleJMoranLJ 2015 The emerging role of chronic low-grade inflammation in the pathophysiology of polycystic ovary syndrome. Seminars in Reproductive Medicine 257269. (https://doi.org/10.1055/s-0035-1556568)

    • Search Google Scholar
    • Export Citation
  • SimonovicMGettinsPGVolzK 2001 Crystal structure of human PEDF, a potent anti-angiogenic and neurite growth-promoting factor. PNAS 1113111135. (https://doi.org/10.1073/pnas.211268598)

    • Search Google Scholar
    • Export Citation
  • Skaznik-WikielMESwindleDCAllshouseAAPolotskyAJMcManamanJL 2016 High-fat diet causes subfertility and compromised ovarian function independent of obesity in mice. Obstetrical and Gynecological Survey 532533. (https://doi.org/10.1097/OGX.0000000000000363)

    • Search Google Scholar
    • Export Citation
  • TeedeHDeeksAMoranL 2010 Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Medicine 41. (https://doi.org/10.1186/1741-7015-8-41)

    • Search Google Scholar
    • Export Citation
  • Tombran-TinkJChaderGGJohnsonLV 1991 PEDF: a pigment epithelium-derived factor with potent neuronal differentiative activity. Experimental Eye Research 411414. (https://doi.org/10.1016/0014-4835(91)90248-d)

    • Search Google Scholar
    • Export Citation
  • Tombran-TinkJMazurukKRodriguezIRChungDLinkerTEnglanderEChaderGJ 1996 Organization, evolutionary conservation, expression and unusual Alu density of the human gene for pigment epithelium-derived factor, a unique neurotrophic serpin. Molecular Vision 11.

    • Search Google Scholar
    • Export Citation
  • WangJJZhangSXLuKChenYMottRSatoSMaJX 2005 Decreased expression of pigment epithelium-derived factor is involved in the pathogenesis of diabetic nephropathy. Diabetes 243250. (https://doi.org/10.2337/diabetes.54.1.243)

    • Search Google Scholar
    • Export Citation
  • WangJJZhangSXMottRChenYKnappRRCaoWMaJX 2008 Anti-inflammatory effects of pigment epithelium-derived factor in diabetic nephropathy. American Journal of Physiology: Renal Physiology F1166F1173. (https://doi.org/10.1152/ajprenal.00375.2007)

    • Search Google Scholar
    • Export Citation
  • YamagishiSImaizumiT 2005 Diabetic vascular complications: pathophysiology, biochemical basis and potential therapeutic strategy. Current Pharmaceutical Design 22792299. (https://doi.org/10.2174/1381612054367300)

    • Search Google Scholar
    • Export Citation
  • YamagishiSNakamuraKUedaSKatoSImaizumiT 2005 Pigment epithelium-derived factor (PEDF) blocks angiotensin II signaling in endothelial cells via suppression of NADPH oxidase: a novel anti-oxidative mechanism of PEDF. Cell and Tissue Research 437445. (https://doi.org/10.1007/s00441-005-1094-8)

    • Search Google Scholar
    • Export Citation
  • YamagishiSINakamuraKMatsuiTYoshidaTTakeuchiMImaizumiT 2007 Pigment epithelium-derived factor (PEDF) blocks advanced glycation end product (AGE)-induced angiogenesis in vitro. Hormone and Metabolic Research 233235. (https://doi.org/10.1055/s-2007-970425)

    • Search Google Scholar
    • Export Citation
  • YaoDBrownleeM 2010 Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes 249255. (https://doi.org/10.2337/db09-0801)

    • Search Google Scholar
    • Export Citation
  • YoshidaTYamagishiSNakamuraKMatsuiTImaizumiTTakeuchiMKogaHUenoTSataM 2008 Pigment epithelium-derived factor (PEDF) ameliorates advanced glycation end product (AGE)-induced hepatic insulin resistance in vitro by suppressing Rac-1 activation. Hormone and Metabolic Research 620625. (https://doi.org/10.1055/s-0028-1083785)

    • Search Google Scholar
    • Export Citation