Activin-inhibitory action on lactotrophs is decreased in lactotroph hyperplasia

in Journal of Endocrinology

Correspondence should be addressed to G Díaz-Torga: gdiaz@ibyme.conicet.gov.ar
Restricted access

Among all the hormone-secreting pituitary tumours, prolactinomas are the most frequently found in the clinic. Since dopamine is the primary inhibitor of lactotroph function, dopamine agonists represent the first-line therapy. However, a subset of patients exhibits resistance to these drugs, and therefore, alternative treatments are desired. As activins inhibit prolactin gene expression through the inhibition of Pit-1 involving the p38MAPK pathway, in the present work, we studied the local activin system as an alternative inhibitory system for lactotroph hyperplasia treatment. We used two different mouse models of prolactinoma: transgenic mice with overexpression of the human chorionic gonadotropin β-subunit (hCGβ) and mice lacking dopamine receptor type 2. In both models, females, but not males, develop lactotroph hyperplasia from the fourth month of life. We found reduced expression of pituitary activin subunits and activin receptors in hyperplastic pituitaries from both models compared with wild-type counterparts. Consequently, hyperplastic pituitaries presented a reduced activin-inhibitory action on prolactin secretion. Additionally, while female wild-type lactotrophs presented high levels of phospho-p38MAPK, it was lost in prolactinomas, concomitant with decreased activin expression, increased Pit-1 expression and tumour development. In contrast, male pituitaries express higher mRNA levels of activin subunits βA and βB, which would suggest a stronger activin inhibitory function on lactotrophs, protecting this sex from tumour development, despite genotype. The present results highlight the importance of the activin inhibitory action on lactotroph function and place the local activin system as a new target for the treatment of dopamine agonist-resistant prolactinomas.

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 101 101 101
Full Text Views 7 7 7
PDF Downloads 2 2 2
  • AsaSLKellyMAGrandyDKLowMJ 1999 Pituitary lactotroph adenomas develop after prolonged lactotroph hyperplasia in dopamine D2 receptor-deficient mice. Endocrinology 53485355. (https://doi.org/10.1210/endo.140.11.7118)

    • Search Google Scholar
    • Export Citation
  • BernardDJChapmanSCWoodruffTK 2002 Inhibin binding protein (InhBP/p120), betaglycan, and the continuing search for the inhibin receptor. Molecular Endocrinology 207212. (https://doi.org/10.1210/mend.16.2.0783)

    • Search Google Scholar
    • Export Citation
  • BilezikjianLMCorriganAZBlountALValeWW 1996 Pituitary follistatin and inhibin subunit messenger ribonucleic acid levels are differentially regulated by local and hormonal factors. Endocrinology 42774284. (https://doi.org/10.1210/endo.137.10.8828487)

    • Search Google Scholar
    • Export Citation
  • BilezikjianLMBlountALLealAMODonaldsonCJFischerWHValeWW 2004 Autocrine/paracrine regulation of pituitary function by activin, inhibin and follistatin. Molecular and Cellular Endocrinology 2936. (https://doi.org/10.1016/j.mce.2004.02.010)

    • Search Google Scholar
    • Export Citation
  • BilezikjianLMJusticeNJBlacklerANWiaterEValeWW 2012 Cell-type specific modulation of pituitary cells by activin, inhibin and follistatin. Molecular and Cellular Endocrinology 4352. (https://doi.org/10.1016/j.mce.2012.01.025)

    • Search Google Scholar
    • Export Citation
  • CiccarelliADalyAFBeckersA 2005 The epidemiology of prolactinomas. Pituitary 36. (https://doi.org/10.1007/s11102-005-5079-0)

  • ColaoASavastanoS 2011 Medical treatment of prolactinomas. Nature Reviews: Endocrinology 267278. (https://doi.org/10.1038/nrendo.2011.37)

    • Search Google Scholar
    • Export Citation
  • ColaoASarnoADCappabiancaPBrigantiFPivonelloRSommaCDFaggianoABiondiBLombardiG 2003 Gender differences in the prevalence, clinical features and response to cabergoline in hyperprolactinemia. European Journal of Endocrinology 325331. (https://doi.org/10.1530/eje.0.1480325)

    • Search Google Scholar
    • Export Citation
  • DalkinACHaisenlederDJGilrainJTAylorKYasinMMarshallJC 1998 Regulation of pituitary follistatin and inhibin/activin subunit messenger ribonucleic acids (mRNAs) in male and female rats: evidence for inhibin regulation of follistatin mRNA in females. Endocrinology 28182823. (https://doi.org/10.1210/endo.139.6.6057)

    • Search Google Scholar
    • Export Citation
  • DavisJRFarrellWEClaytonRN 2001 Pituitary tumours. Reproduction 363371. (https://doi.org/10.1530/rep.0.1210363)

  • de GuiseCLacerteARafieiSReynaudRRoyMBrueTLebrunJJ 2006 Activin inhibits the human Pit-1 gene promoter through the p38 kinase pathway in a Smad-independent manner. Endocrinology 43514362. (https://doi.org/10.1210/en.2006-0444)

    • Search Google Scholar
    • Export Citation
  • DerynckRZhangYE 2003 Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 577584. (https://doi.org/10.1038/nature02006)

    • Search Google Scholar
    • Export Citation
  • DiasVLRajpert-De MeytsEMcLachlanRLovelandKL 2009 Analysis of activin/TGFB-signaling modulators within the normal and dysfunctional adult human testis reveals evidence of altered signaling capacity in a subset of seminomas. Reproduction 801811. (https://doi.org/10.1530/REP-09-0206)

    • Search Google Scholar
    • Export Citation
  • Díaz-TorgaGFeiersteinCLibertunCGelmanDKellyMALowMJRubinsteinMBecú-VillalobosD 2002 Disruption of the D2 dopamine receptor alters GH and IGF-I secretion and causes dwarfism in male mice. Endocrinology 12701279. (https://doi.org/10.1210/endo.143.4.8750)

    • Search Google Scholar
    • Export Citation
  • EngelMEMcDonnellMALawBKMosesHL 1999 Interdependent SMAD and JNK signaling in transforming growth factor-β-mediated transcription. Journal of Biological Chemistry 3741337420. (https://doi.org/10.1074/jbc.274.52.37413)

    • Search Google Scholar
    • Export Citation
  • Fainstein DayPGlereanMLovazzanoSPietraniMChristiansenSBalzarettiMKozakACarrizoA 2010 Gender differences in macroprolactinomas: study of clinical features, outcome of patients and Ki-67 expression in tumor tissue. Frontiers of Hormone Research 5058. (https://doi.org/10.1159/000318494)

    • Search Google Scholar
    • Export Citation
  • FaraoniEYCamillettiMAAbeledo-MachadoARatnerLDde FinoFIpo HuhtaniemiIRulliSBDíaz-TorgaG 2017 Sex differences in the development of prolactinoma in mice overexpressing hCGB: role of TGFB1. Journal of Endocrinology 535546. (https://doi.org/10.1530/JOE-16-0371)

    • Search Google Scholar
    • Export Citation
  • FarrellWE 2006 Pituitary tumours: findings from whole genome analyses. Endocrine-Related Cancer 707716. (https://doi.org/10.1677/erc.1.01131)

    • Search Google Scholar
    • Export Citation
  • GillamMPMolitchMELombardiGColaoA 2006 Advances in the treatment of prolactinomas. Endocrine Reviews 485534. (https://doi.org/10.1210/er.2005-9998)

    • Search Google Scholar
    • Export Citation
  • GonzalezBRatnerLDDiNPPoutanenMHuhtaniemiITCalandraRSLux-LantosVARRulliSB 2011 Endogenously elevated androgens alter the developmental programming of the hypothalamic–pituitary axis in male mice. Molecular and Cellular Endocrinology 7887. (https://doi.org/10.1016/j.mce.2010.09.016)

    • Search Google Scholar
    • Export Citation
  • GregorySJKaiserUB 2004 Regulation of gonadotropins by inhibin and activin. Seminars in Reproductive Medicine 253267. (https://doi.org/10.1055/s-2004-831901)

    • Search Google Scholar
    • Export Citation
  • KarsMDekkersOMPereiraAMRomijnJA 2010 Update in prolactinomas. Netherlands Journal of Medicine 104112.

  • KellyMARubinsteinMAsaSLZhangGSaezCBunzowJRAllenRGHnaskoRBen-JonathanNGrandyDK 1997 Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice. Neuron 103113. (https://doi.org/10.1016/s0896-6273(00)80351-7)

    • Search Google Scholar
    • Export Citation
  • KeoghEJLeeVWRennieGCBurgerHGHudsonBDe KretserDM 1976 Selective suppression of FSH by testicular extracts. Endocrinology 9971004. (https://doi.org/10.1210/endo-98-4-997)

    • Search Google Scholar
    • Export Citation
  • KovacsKHorvathEVidalS 2001 Classification of pituitary adenomas. Journal of Neuro-Oncology 121127. (https://doi.org/10.1023/a:1012945129981)

    • Search Google Scholar
    • Export Citation
  • LacerteALeeEHReynaudRCanaffLDe GuiseCDevostDAliSHendyGNLebrunJJ 2004 Activin inhibits pituitary prolactin expression and cell growth through Smads, Pit-1 and menin. Molecular Endocrinology 15581569. (https://doi.org/10.1210/me.2003-0470)

    • Search Google Scholar
    • Export Citation
  • LebrunJJ 2009 Activin, TGF-beta and menin in pituitary tumorigenesis. Advances in Experimental Medicine and Biology 6978. (https://doi.org/10.1007/978-1-4419-1664-8_7)

    • Search Google Scholar
    • Export Citation
  • LebrunJJTakabeKChenYValeW 1999 Roles of pathway-specific and inhibitory Smads in activin receptor signaling. Molecular Endocrinology 1523. (https://doi.org/10.1210/mend.13.1.0218)

    • Search Google Scholar
    • Export Citation
  • LerchTFShimasakiSWoodruffTKJardetzkyTS 2007 Structural and biophysical coupling of heparin and activin binding to follistatin isoform functions. Journal of Biological Chemistry 1593015939. (https://doi.org/10.1074/jbc.M700737200)

    • Search Google Scholar
    • Export Citation
  • LewisKAGrayPCBlountALMacConellLAWiaterEBilezikjianLMValeW 2000 Betaglycan binds inhibin and can mediate functional antagonism of activin signalling. Nature 411414. (https://doi.org/10.1038/35006129)

    • Search Google Scholar
    • Export Citation
  • LiuJKCouldwellWT 2004 Contemporary management of prolactinomas. Neurosurgical Focus E2. (https://doi.org/10.3171/foc.2004.16.4.3)

  • MacConellLALealAMOValeWW 2002 The distribution of betaglycan protein and mRNA in rat brain, pituitary, and gonads: implications for a role for betaglycan in inhibin-mediated reproductive functions. Endocrinology 10661075. (https://doi.org/10.1210/endo.143.3.8707)

    • Search Google Scholar
    • Export Citation
  • MaiterD 2019 Management of dopamine agonist-resistant prolactinoma. Neuroendocrinology 109 4250. (https://doi.org/10.1159/000495775)

  • MakanjiYZhuJMishraRHolmquistCWongWPSSchwartzNBMayoKEWoodruffTK 2014 Inhibin at 90: from discovery to clinical application, a historical review. Endocrine Reviews 747794. (https://doi.org/10.1210/er.2014-1003)

    • Search Google Scholar
    • Export Citation
  • McLachlanRICohenNLValeWWRivierJEBurgerHGBremnerWJSoulesMR 1989 The importance of luteinizing hormone in the control of inhibin and progesterone secretion by the human corpus luteum. Journal of Clinical Endocrinology and Metabolism 10781085. (https://doi.org/10.1210/jcem-68-6-1078)

    • Search Google Scholar
    • Export Citation
  • MeteOCintosunAPressmanIAsaSL 2018 Epidemiology and biomarker profile of pituitary adenohypophysial tumors. Modern Pathology 900909 (https://doi.org/10.1038/s41379-018-0016-8)

    • Search Google Scholar
    • Export Citation
  • MindermannTWilsonCB 1994 Age-related and gender-related occurrence of pituitary adenomas. Clinical Endocrinology 359364. (https://doi.org/10.1111/j.1365-2265.1994.tb02557.x)

    • Search Google Scholar
    • Export Citation
  • MiyamotoSIraharaMUshigoeKKuwaharaASuginoHAonoT 1999 Effects of activin on hormone secretion by single female rat pituitary cells: analysis by cell immunoblot assay. Journal of Endocrinology 375382. (https://doi.org/10.1677/joe.0.1610375)

    • Search Google Scholar
    • Export Citation
  • MolitchME 2014 Management of medically refractory prolactinoma. Journal of Neuro-Oncology 421428. (https://doi.org/10.1007/s11060-013-1270-8)

    • Search Google Scholar
    • Export Citation
  • NamwanjeMBrownCW 2016 Activins and inhibins: roles in development, physiology, and disease. Cold Spring Harbor Perspectives in Biology a021881. (https://doi.org/10.1101/cshperspect.a021881)

    • Search Google Scholar
    • Export Citation
  • OlsenOEWaderKFHellaHMylinAKTuressonINesthusIWaageASundanAHolienT 2015 Activin A inhibits BMP-signaling by binding ACVR2A and ACVR2B. Cell Communication and Signaling 27. (https://doi.org/10.1186/s12964-015-0104-z)

    • Search Google Scholar
    • Export Citation
  • PerezPAPetitiJPPicechFGuidoCBdV SosaLGrondonaEMukdsiJHDe PaulALTorresAIGutierrezS 2018 Estrogen receptor beta regulates the tumoral suppressor PTEN to modulate pituitary cell growth. Journal of Cellular Physiology 14021413. (https://doi.org/10.1002/jcp.26025)

    • Search Google Scholar
    • Export Citation
  • PrimeauVRaftopoulosCMaiterD 2012 Outcomes of transsphenoidal surgery in prolactinomas: improvement of hormonal control in dopamine agonist-resistant patients. European Journal of Endocrinology 779786. (https://doi.org/10.1530/EJE-11-1000)

    • Search Google Scholar
    • Export Citation
  • RatnerLDGonzalezBAhtiainenPDi GiorgioNPPoutanenMCalandraRSHuhtaniemiITRulliSB 2012 Short-term pharmacological suppression of the hyperprolactinemia of infertile hCG-overproducing female mice persistently restores their fertility. Endocrinology 59805992. (https://doi.org/10.1210/en.2012-1393)

    • Search Google Scholar
    • Export Citation
  • RecouvreuxMVGuidaMCRifkinDBBecu-VillalobosDDiaz-TorgaG 2011 Active and total transforming growth factor-beta1 are differentially regulated by dopamine and estradiol in the pituitary. Endocrinology 27222730. (https://doi.org/10.1210/en.2010-1464)

    • Search Google Scholar
    • Export Citation
  • RisbridgerGPSchmittJFRobertsonDM 2001 Activins and inhibins in endocrine and other tumors. Endocrine Reviews 836858. (https://doi.org/10.1210/edrv.22.6.0450)

    • Search Google Scholar
    • Export Citation
  • RulliSBHuhtaniemiI 2005 What have gonadotrophin overexpressing transgenic mice taught us about gonadal function? Reproduction 283291. (https://doi.org/10.1530/rep.1.00661)

    • Search Google Scholar
    • Export Citation
  • RulliSBKuorelahtiAKaraerOPelliniemiLJPoutanenMHuhtaniemiI 2002 Reproductive disturbances, pituitary lactotrope adenomas, and mammary gland tumors in transgenic female mice producing high levels of human chorionic gonadotropin. Endocrinology 40844095. (https://doi.org/10.1210/en.2002-220490)

    • Search Google Scholar
    • Export Citation
  • RulliSBAhtiainenPMakelaSToppariJPoutanenMHuhtaniemiI 2003 Elevated steroidogenesis, defective reproductive organs, and infertility in transgenic male mice overexpressing human chorionic gonadotropin. Endocrinology 49804990. (https://doi.org/10.1210/en.2003-0403)

    • Search Google Scholar
    • Export Citation
  • SaiardiABozziYBaikJHBorrelliE 1997 Antiproliferative role of dopamine: loss of D2 receptors causes hormonal dysfunction and pituitary hyperplasia. Neuron 115126. (https://doi.org/10.1016/S0896-6273(00)80352-9)

    • Search Google Scholar
    • Export Citation
  • SchlechteJA 2007 Long-term management of prolactinomas. Journal of Clinical Endocrinology and Metabolism 28612865. (https://doi.org/10.1210/jc.2007-0836)

    • Search Google Scholar
    • Export Citation
  • SchneyerALWangQSidisYSlussPM 2004 Differential distribution of follistatin isoforms: application of a new FS315-specific immunoassay. Journal of Clinical Endocrinology and Metabolism 50675075. (https://doi.org/10.1210/jc.2004-0162)

    • Search Google Scholar
    • Export Citation
  • ShayyaRFRosencrantzMAChuanSSCook-AndersenHRoudebushWEIrene SuHShimasakiSChangRJ 2014 Decreased inhibin B responses following recombinant human chorionic gonadotropin administration in normal women and women with polycystic ovary syndrome. Fertility and Sterility 275279. (https://doi.org/10.1016/j.fertnstert.2013.09.037)

    • Search Google Scholar
    • Export Citation
  • ShiLResaulJOwenSYeLJiangWG 2016 Clinical and therapeutic implications of follistatin in solid tumours. Cancer Genomics and Proteomics 425435. (https://doi.org/10.21873/cgp.20005)

    • Search Google Scholar
    • Export Citation
  • ShimasakiSKogaMEschFMercadoMCookseyKKobaALingN 1988 Porcine follistatin gene structure supports two forms of mature follistatin produced by alternative splicing. Biochemical and Biophysical Research Communications 717723. (https://doi.org/10.1016/s0006-291x(88)80097-4)

    • Search Google Scholar
    • Export Citation
  • SmithKBMillarMRMcNeillyASIllingworthPJFraserHMBairdDT 1991 Immunocytochemical localization of inhibin alpha-subunit in the human corpus luteum. Journal of Endocrinology 155160. (https://doi.org/10.1677/joe.0.1290155)

    • Search Google Scholar
    • Export Citation
  • SmithTRHulouMMHuangKTGokogluACoteDJWoodmanseeWWLawsERJ 2015 Current indications for the surgical treatment of prolactinomas. Journal of Clinical Neuroscience 17851791. (https://doi.org/10.1016/j.jocn.2015.06.001)

    • Search Google Scholar
    • Export Citation
  • SuginoHSuginoKHashimotoOShojiHNakamuraT 1997 Follistatin and its role as an activin-binding protein. Journal of Medical Investigation 114.

    • Search Google Scholar
    • Export Citation
  • SuszkoMIWoodruffTK 2006 Cell-specificity of transforming growth factor-beta response is dictated by receptor bioavailability. Journal of Molecular Endocrinology 591600. (https://doi.org/10.1677/jme.1.01936)

    • Search Google Scholar
    • Export Citation
  • SzetoDPRyanAKO’ConnellSMRosenfeldMG 1996 P-OTX: a PIT-1-interacting homeodomain factor expressed during anterior pituitary gland development. PNAS 77067710. (https://doi.org/10.1073/pnas.93.15.7706)

    • Search Google Scholar
    • Export Citation
  • ThompsonTBLerchTFCookRWWoodruffTKJardetzkyTS 2005 The structure of the follistatin:activin complex reveals antagonism of both type I and type II receptor binding. Developmental Cell 535543. (https://doi.org/10.1016/j.devcel.2005.09.008)

    • Search Google Scholar
    • Export Citation
  • ValeWRivierJVaughanJMcClintockRCorriganAWooWKarrDSpiessJ 1986 Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid. Nature 776779. (https://doi.org/10.1038/321776a0)

    • Search Google Scholar
    • Export Citation
  • ValeWWiaterEGrayPHarrisonCBilezikjianLChoeS 2004 Activins and inhibins and their signaling. Annals of the New York Academy of Sciences 142147. (https://doi.org/10.1196/annals.1315.023)

    • Search Google Scholar
    • Export Citation
  • VroonenLJaffrain-ReaMLPetrossiansPTamagnoGChansonPVilarLBorson-ChazotFNavesLABrueTGattaB 2012 Prolactinomas resistant to standard doses of cabergoline: a multicenter study of 92 patients. European Journal of Endocrinology 651662. (https://doi.org/10.1530/EJE-12-0236)

    • Search Google Scholar
    • Export Citation
  • WeltCSidisYKeutmannHSchneyerA 2002 Activins, inhibins, and follistatins: from endocrinology to signaling. A paradigm for the new millennium. Experimental Biology and Medicine 724752. (https://doi.org/10.1177/153537020222700905)

    • Search Google Scholar
    • Export Citation
  • WiaterELewisKADonaldsonCVaughanJBilezikjianLValeW 2009 Endogenous betaglycan is essential for high-potency inhibin antagonism in gonadotropes. Molecular Endocrinology 10331042. (https://doi.org/10.1210/me.2009-0021)

    • Search Google Scholar
    • Export Citation
  • WongAEloyJACouldwellWTLiuJK 2015a Update on prolactinomas. Part 1: clinical manifestations and diagnostic challenges. Journal of Clinical Neuroscience 15621567. (https://doi.org/10.1016/j.jocn.2015.03.058)

    • Search Google Scholar
    • Export Citation
  • WongAEloyJACouldwellWTLiuJK 2015b Update on prolactinomas. Part 2: treatment and management strategies. Journal of Clinical Neuroscience 15681574. (https://doi.org/10.1016/j.jocn.2015.03.059)

    • Search Google Scholar
    • Export Citation
  • WoodruffTKBeseckeLMGroomeNDraperLBSchwartzNBWeissJ 1996 Inhibin A and inhibin B are inversely correlated to follicle-stimulating hormone, yet are discordant during the follicular phase of the rat estrous cycle, and inhibin A is expressed in a sexually dimorphic manner. Endocrinology 54635467. (https://doi.org/10.1210/endo.137.12.8940372)

    • Search Google Scholar
    • Export Citation