Glucocorticoid and mineralocorticoid receptor activation modulates postnatal growth

in Journal of Endocrinology
Authors:
Erin Faught Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada

Search for other papers by Erin Faught in
Current site
Google Scholar
PubMed
Close
and
Mathilakath M Vijayan Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada

Search for other papers by Mathilakath M Vijayan in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to M M Vijayan: matt.vijayan@ucalgary.ca
Restricted access
Rent on DeepDyve

Sign up for journal news

During early development, stress or exogenous glucocorticoid (GC) administration reduces body mass in vertebrates, and this is associated with the glucocorticoid receptor (GR) activation. Although GCs also activate the mineralocorticoid receptor (MR), the physiological significance of MR activation on early developmental growth is unknown. We tested the hypothesis that activation of both GR and MR are required for postnatal growth suppression by GCs. Differential regulation of GR and MR activation was achieved by using ubiquitous GR- (GRKO) and MR- (MRKO) knockout zebrafish (Danio rerio) in combination with exogenous cortisol treatment. MR activation increased protein deposition in zebrafish larvae and also upregulated lepa and downregulated lepr transcript abundance. Cortisol treatment reduced body mass and protein content in the WT, and this corresponded with the upregulation of muscle proteolytic markers, including murf1 and redd1 by GR activation. The combined activation of MR and GR by cortisol also upregulated the gh and igf1 transcript abundance, and insulin expression compared to the WT. However, cortisol-mediated reduction in body mass and protein content required the activation of both MR and GR, as activation by GR alone (MRKO + cortisol) did not reduce the larval protein content. Collectively, our results indicate that MR activation favors protein deposition and GR activation stimulates proteolysis, while their combined activation is involved in cortisol-mediated growth suppression. Overall, this work provides insight into the physiological significance of MR activation in regulating protein deposition during early development at a systems level.

 

  • Collapse
  • Expand
  • Alsop D & Vijayan MM 2008 Development of the corticosteroid stress axis and receptor expression in zebrafish. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology R711R719. (https://doi.org/10.1152/ajpregu.00671.2007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Alsop D & Vijayan MM 2009 The zebrafish stress axis: molecular fallout from the teleost-specific genome duplication event. General and Comparative Endocrinology 6266. (https://doi.org/10.1016/j.ygcen.2008.09.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Baker ME, Funder JW & Kattoula SR 2013 Evolution of hormone selectivity in glucocorticoid and mineralocorticoid receptors. Journal of Steroid Biochemistry and Molecular Biology 5770. (https://doi.org/10.1016/j.jsbmb.2013.07.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bernier NJ 2006 The corticotropin-releasing factor system as a mediator of the appetite-suppressing effects of stress in fish. General and Comparative Endocrinology 4555. (https://doi.org/10.1016/j.ygcen.2005.11.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Britto FA, Begue G, Rossano B, Docquier A, Vernus B, Sar C, Ferry A, Bonnieu A, Ollendorff V & Favier FB 2014 REDD1 deletion prevents dexamethasone-induced skeletal muscle atrophy. American Journal of Physiology: Endocrinology and Metabolism E983E993. (https://doi.org/10.1152/ajpendo.00234.2014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Britto FA, Cortade F, Belloum Y, Blaquière M, Gallot YS, Docquier A, Pagano AF, Jublanc E, Bendridi N, Koechlin-Ramonatxo C, et al.2018 Glucocorticoid-dependent REDD1 expression reduces muscle metabolism to enable adaptation under energetic stress. BMC Biology 65. (https://doi.org/10.1186/s12915-018-0525-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chadwick JA, Hauck JS, Lowe J, Shaw JJ, Guttridge DC, Gomez-Sanchez CE, Gomez-Sanchez EP & Rafael-Fortney JA 2015 Mineralocorticoid receptors are present in skeletal muscle and represent a potential therapeutic target. FASEB Journal 45444554. (https://doi.org/10.1096/fj.15-276782)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chadwick JA, Bhattacharya S, Lowe J, Weisleder N & Rafael-Fortney JA 2017 Renin-angiotensin-aldosterone system inhibitors improve membrane stability and change gene-expression profiles in dystrophic skeletal muscles. American Journal of Physiology: Cell Physiology C155C168. (https://doi.org/10.1152/ajpcell.00269.2016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Charmandari E, Tsigos C & Chrousos G 2005 Endocrinology of the stress response. Annual Review of Physiology 259284. (https://doi.org/10.1146/annurev.physiol.67.040403.120816)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cianfarani S, Geremia C, Scott CD & Germani D 2002 Growth, IGF system, and cortisol in children with intrauterine growth retardation: is catch-up growth affected by reprogramming of the hypothalamic-pituitary-adrenal axis? Pediatric Research 9499. (https://doi.org/10.1203/00006450-200201000-00017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Copeland DL, Duff RJ, Liu Q, Prokop J & Londraville RL 2011 Leptin in teleost fishes: an argument for comparative study. Frontiers in Physiology 26. (https://doi.org/10.3389/fphys.2011.00026)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • de Kloet ER & Reul JMHM 1987 Feedback action and tonic influence of the corticosteroids on brain function: a concept arising from the heterogeneity of brain receptor systems. Psychoneuroendocrinology 83105. (https://doi.org/10.1016/0306-4530(87)90040-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Facchinello N, Skobo T, Meneghetti G, Colletti E, Dinarello A, Tiso N, Costa R, Gioacchini G, Carnevali O, Argenton F, et al.2017 nr3c1 null mutant zebrafish are viable and reveal DNA-binding-independent activities of the glucocorticoid receptor. Scientific Reports 4371. (https://doi.org/10.1038/s41598-017-04535-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Faught E & Vijayan MM 2018a The mineralocorticoid receptor is essential for stress axis regulation in zebrafish larvae. Scientific Reports 18081. (https://doi.org/10.1038/s41598-018-36681-w)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Faught E & Vijayan MM 2018b Maternal stress and fish reproduction: the role of cortisol revisited. Fish and Fisheries 10161030. (https://doi.org/10.1111/faf.12309)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Faught E & Vijayan MM 2019a Loss of the glucocorticoid receptor in zebrafish improves muscle glucose availability and increases growth. American Journal of Physiology: Endocrinology and Metabolism E1093E1104. (https://doi.org/10.1152/ajpendo.00045.2019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Faught E & Vijayan MM 2019b Postnatal triglyceride accumulation is regulated by the mineralocorticoid receptor under basal and stress conditions. Journal of Physiology 49274941. (https://doi.org/10.1113/JP278088)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Feng Q, Zou X, Lu L, Li Y, Liu Y, Zhou J & Duan C 2012 The stress-response gene redd1 regulates dorsoventral patterning by antagonizing Wnt/b-catenin activity in zebrafish. PLoS ONE e52674. (https://doi.org/10.1371/journal.pone.0052674)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Galt NJ, Michael J, Remily EA, Romero SR & Biga PR 2014 The effects of exogenous cortisol on myostatin transcription in rainbow. Comparative Biochemistry and Physiology, Part A 5763. (https://doi.org/10.1016/j.cbpa.2014.05.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gokulakrishnan G, Estrada IJ, Sosa HA & Fiorotto ML 2012 In utero glucocorticoid exposure reduces fetal skeletal muscle mass in rats independent of effects on maternal nutrition. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology R1143R1152. (https://doi.org/10.1152/ajpregu.00466.2011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Greenwood PL & Bell AW 2003 Consequences of intra-uterine growth retardation for postnatal growth, metabolism and pathophysiology. Reproduction 195206. (https://doi.org/10.1530/biosciprocs.5.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Joëls M & de Kloet ER 2017 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: The brain mineralocorticoid receptor: a saga in three episodes. Journal of Endocrinology T49T66. (https://doi.org/10.1530/JOE-16-0660)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kelly HW, Sternberg AL, Lescher R, Fuhlbrigge AL, Williams P, Zeiger RS, Raissy HH, Van Natta ML, Tonascia J, Strunk RC, et al.2012 Effect of inhaled glucocorticoids in childhood on adult height. New England Journal of Medicine 904912. (https://doi.org/10.1056/NEJMoa1203229)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kiilerich P, Triqueneaux G, Christensen NM, Trayer V, Terrien X, Lombès M & Prunet P 2015 Interaction between the trout mineralocorticoid and glucocorticoid receptors in vitro. Journal of Molecular Endocrinology 5568. (https://doi.org/10.1530/JME-15-0002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kuo T, Harris CA & Wang JC 2013 Metabolic functions of glucocorticoid receptor in skeletal muscle. Molecular and Cellular Endocrinology 7988. (https://doi.org/10.1016/j.mce.2013.03.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lipina C & Hundal HS 2016 Is REDD1 a metabolic éminence grise? Trends in Endocrinology and Metabolism 868880. (https://doi.org/10.1016/j.tem.2016.08.005)

  • Liu Q, Chen Y, Copeland D, Ball H, Duff RJ, Rockich B & Londraville RL 2010 Expression of leptin receptor gene in developing and adult zebrafish. General and Comparative Endocrinology 346355. (https://doi.org/10.1016/j.ygcen.2009.11.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu Q, Dalman M, Chen Y, Akhter M, Brahmandam S, Patel Y, Lowe J, Thakkar M, Gregory AV, Phelps D, et al.2012 Knockdown of leptin A expression dramatically alters zebrafish development. General and Comparative Endocrinology 562572. (https://doi.org/10.1016/j.ygcen.2012.07.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Löhr H, Hess S, Pereira MMA, Reinoß P, Leibold S, Schenkel C, Wunderlich CM, Kloppenburg P, Brüning JC & Hammerschmidt M 2018 Diet-induced growth is regulated via acquired leptin resistance and engages a Pomc-somatostatin-growth hormone circuit. Cell Reports 17281741. (https://doi.org/10.1016/j.celrep.2018.04.018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Madison BN, Tavakoli S, Kramer S & Bernier NJ 2015 Chronic cortisol and the regulation of food intake and the endocrine growth axis in rainbow trout. Journal of Endocrinology 103119. (https://doi.org/10.1530/JOE-15-0186)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marzolla V, Armani A, Zennaro MC, Cinti F, Mammi C, Fabbri A, Rosano GMC & Caprio M 2012 The role of the mineralocorticoid receptor in adipocyte biology and fat metabolism. Molecular and Cellular Endocrinology 281288. (https://doi.org/10.1016/j.mce.2011.09.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McCormick SD, Shrimpton JM, Carey JB, O’Dea MF, Sloan KE, Moriyama S & Björnsson BT 1998 Repeated acute stress reduces growth rate of Atlantic salmon parr and alters plasma levels of growth hormone, insulin-like growth factor I and cortisol. Aquaculture 221235. (https://doi.org/10.1016/S0044-8486(98)00351-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Michel M, Page-McCaw PS, Chen W & Cone RD 2016 Leptin signaling regulates glucose homeostasis, but not adipostasis, in the zebrafish. PNAS 30843089. (https://doi.org/10.1073/pnas.1513212113)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mifsud KR & Reul JMHM 2016 Acute stress enhances heterodimerization and binding of corticosteroid receptors at glucocorticoid target genes in the hippocampus. PNAS 1133611341. (https://doi.org/10.1073/pnas.1605246113)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mifsud KR & Reul JMHM 2018 Mineralocorticoid and glucocorticoid receptor-mediated control of genomic responses to stress in the brain. Stress 389402. (https://doi.org/10.1080/10253890.2018.1456526)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mommsen TP 2001 Paradigms of growth in fish. Comparative Biochemistry and Physiology 207219. (https://doi.org/10.1016/S1096-4959(01)00312-8)

  • Mommsen TP, Vijayan MM & Moon TW 1999 Cortisol in teleosts : dynamics, mechanisms of action, and metabolic regulation. Reviews in Fish Biology and Fisheries 211268. (https://doi.org/10.1023/A:1008924418720)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nesan D & Vijayan MM 2016 Maternal cortisol mediates hypothalamus-pituitary-interrenal axis development in zebrafish. Scientific Reports 22582. (https://doi.org/10.1038/srep22582)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nesan D, Kamkar M, Burrows J, Scott IC, Marsden M & Vijayan MM 2012 Glucocorticoid receptor signaling is essential for mesoderm formation and muscle development in zebrafish. Endocrinology 12881300. (https://doi.org/10.1210/en.2011-1559)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ortega VA, Lovejoy DA & Bernier NJ 2013 Appetite-suppressing effects and interactions of centrally administered corticotropin-releasing factor, urotensin I and serotonin in rainbow trout (Oncorhynchus mykiss). Frontiers in Neuroscience 196. (https://doi.org/10.3389/fnins.2013.00196)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pickering AD 1993 Growth and stress in fish production. Aquaculture 5163. (https://doi.org/10.1016/0044-8486(93)90024-S)

  • Rivers CA, Rogers MF, Stubbs FE, Conway-Campbell BL, Lightman SL & Pooley JR 2019 Glucocorticoid receptor-tethered mineralocorticoid receptors increase glucocorticoid-induced transcriptional responses. Endocrinology 10441056. (https://doi.org/10.1210/en.2018-00819)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sadoul B & Vijayan MM 2016 Stress and growth. In Fish Physiology, pp 167205. Eds Schreck CB, Tort L, Farrell AP & Brauner CJ. Amsterdam, Netherlands: Elsevier Inc. (https://doi.org/10.1016/B978-0-12-802728-8.00005-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sartin JL, Kemppainen RJ, Coleman ES, Steele B & Williams JC 1994 Cortisol inhibition of growth hormone-releasing hormone-stimulated growth hormone release from cultured sheep pituitary cells. Journal of Endocrinology 517525. (https://doi.org/10.1677/joe.0.1410517)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shapiro LE, Samuels HH & Yaffe BM 1978 Thyroid and glucocorticoid hormones synergistically control growth hormone mRNA in cultured GH1 cells. PNAS 4549. (https://doi.org/10.1073/pnas.75.1.45)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shepherd BS, Aluru N & Vijayan MM 2011 Acute handling disturbance modulates plasma insulin-like growth factor binding proteins in rainbow trout (Oncorhynchus mykiss). Domestic Animal Endocrinology 129138. (https://doi.org/10.1016/j.domaniend.2010.09.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shimizu N, Yoshikawa N, Ito N, Maruyama T, Suzuki Y, Takeda SI, Nakae J, Tagata Y, Nishitani S, Takehana K, et al.2011 Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metabolism 170182. (https://doi.org/10.1016/j.cmet.2011.01.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shimizu H, Langenbacher AD, Huang J, Wang K, Otto G, Geisler R, Wang Y & Chen JN 2017 The calcineurin-FoxO-MuRF1 signaling pathway regulates myofibril integrity in cardiomyocytes. eLife 119. (https://doi.org/10.7554/eLife.27955)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Solano JM & Jacobson L 1999 Glucocorticoids reverse leptin effects on food intake and body fat in mice without increasing NPY mRNA. American Journal of Physiology: Endocrinology and Metabolism E708E716. (https://doi.org/10.1016/0031-9384(73)90207-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Uddén J, Björntorp P, Arner P, Barkeling B, Meurling L & Rössner S 2003 Effects of glucocorticoids on leptin levels and eating behaviour in women. Journal of Internal Medicine 225231. (https://doi.org/10.1046/j.1365-2796.2003.01099.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yuen KCJ, Chong LE & Riddle MC 2013 Influence of glucocorticoids and growth hormone on insulin sensitivity in humans. Diabetic Medicine 651663. (https://doi.org/10.1111/dme.12184)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zakrzewska KE, Cusin I, Sainsbury A, Rohner-Jeanrenaud F & Jeanrenaud B 1997 Glucocorticoids as counterregulatory hormones of leptin: toward an understanding of leptin resistance. Diabetes 717719. (https://doi.org/10.2337/diab.46.4.717)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ziv L, Muto A, Schoonheim PJ, Meijsing SH, Strasser D, Ingraham H, Schaaf MJ, Yamamoto KR & Baier H 2013 An affective disorder in zebrafish with mutation of the glucocorticoid receptor. Molecular Psychiatry 681691. (https://doi.org/10.1038/mp.2012.64)

    • PubMed
    • Search Google Scholar
    • Export Citation