A mouse model of gestation-specific transient hyperglycemia for translational studies

in Journal of Endocrinology
Authors:
H Y Li Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Republic of Singapore

Search for other papers by H Y Li in
Current site
Google Scholar
PubMed
Close
,
Y X Liu Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Republic of Singapore
Danone Nutricia Research, Singapore, Republic of Singapore

Search for other papers by Y X Liu in
Current site
Google Scholar
PubMed
Close
,
L Harvey Danone Nutricia Research, Utrecht, The Netherlands

Search for other papers by L Harvey in
Current site
Google Scholar
PubMed
Close
,
S Shafaeizadeh Danone Nutricia Research, Utrecht, The Netherlands

Search for other papers by S Shafaeizadeh in
Current site
Google Scholar
PubMed
Close
,
E M van der Beek Danone Nutricia Research, Utrecht, The Netherlands
Department of Pediatrics, University Medical Centre Groningen, Groningen, The Netherlands

Search for other papers by E M van der Beek in
Current site
Google Scholar
PubMed
Close
, and
W Han Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Republic of Singapore
Institute of Molecular and Cell Biology, A*STAR, Singapore, Republic of Singapore
School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China

Search for other papers by W Han in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to W Han: wh10@cornell.edu
Restricted access
Rent on DeepDyve

Sign up for journal news

The prevalence of gestational diabetes mellitus (GDM) is estimated at 14% globally, and in some countries, such as Singapore, exceeds 20%. Both women and children exposed to GDM have an increased risk of later metabolic diseases, cardiovascular disease and other health issues. Beyond lifestyle changes and pharmaceutical intervention using existing type 2 diabetes medications for expecting women, there are limited treatment options for women with GDM; targeting better outcomes of potentially affected infants is unexplored. Numerous animal models have been generated for understanding of pathological processes of GDM development and for development of treatment strategies. These models, however, suffer from limited windows of opportunity to examine risk factors and potential intervention options. By combining short-term high-fat diet (HFD) feeding and low-dose streptozotocin (STZ) treatments before pregnancy, we have established a mouse model with marked transient gestation-specific hyperglycemia, which allows testing of nutritional and pharmacological interventions before, during and beyond pregnancy.

 

  • Collapse
  • Expand
  • Balsells M, Garcia-Patterson A, Gich I & Corcoy R 2009 Maternal and fetal outcome in women with type 2 versus type 1 diabetes mellitus: a systematic review and metaanalysis. Journal of Clinical Endocrinology and Metabolism 42844291. (https://doi.org/10.1210/jc.2009-1231)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bimson BE, Rosenn BM, Morris SA, Sasso EB, Schwartz RA & Brustman LE 2017 Current trends in the diagnosis and management of gestational diabetes mellitus in the United States. Journal of Maternal-Fetal and Neonatal Medicine 26072612. (https://doi.org/10.1080/14767058.2016.1257603)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chong YS, Cai S, Lin H, Soh SE, Lee YS, Leow MK, Chan YH, Chen L, Holbrook JD, Tan KH, et al. 2014 Ethnic differences translate to inadequacy of high-risk screening for gestational diabetes mellitus in an Asian population: a cohort study. BMC Pregnancy and Childbirth 345. (https://doi.org/10.1186/1471-2393-14-345)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Coustan DR, Lowe LP, Metzger BE, Dyer AR & International Association of Diabetes and Pregnancy Study Groups 2010 The Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study: paving the way for new diagnostic criteria for gestational diabetes mellitus. American Journal of Obstetrics and Gynecology 654.e1654.e6. (https://doi.org/10.1016/j.ajog.2010.04.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ehrlich SF, Hedderson MM, Feng J, Davenport ER, Gunderson EP & Ferrara A 2011 Change in body mass index between pregnancies and the risk of gestational diabetes in a second pregnancy. Obstetrics and Gynecology 13231330. (https://doi.org/10.1097/AOG.0b013e31821aa358)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Eleazu CO, Eleazu KC, Chukwuma S & Essien UN 2013 Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. Journal of Diabetes and Metabolic Disorders 60. (https://doi.org/10.1186/2251-6581-12-60)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Farahvar S, Walfisch A & Sheiner E 2019 Gestational diabetes risk factors and long-term consequences for both mother and offspring: a literature review. Expert Review of Endocrinology and Metabolism 14 6374. (https://doi.org/10.1080/17446651.2018.1476135)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Farrar D, Simmonds M, Bryant M, Sheldon TA, Tuffnell D, Golder S & Lawlor DA 2017 Treatments for gestational diabetes: a systematic review and meta-analysis. BMJ Open e015557. (https://doi.org/10.1136/bmjopen-2016-015557)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Getahun D, Fassett MJ & Jacobsen SJ 2010 Gestational diabetes: risk of recurrence in subsequent pregnancies. American Journal of Obstetrics and Gynecology 467.e1467.e6. (https://doi.org/10.1016/j.ajog.2010.05.032)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Giavini E, Broccia ML, Prati M, Roversi GD & Vismara C 1986 Effects of streptozotocin-induced diabetes on fetal development of the rat. Teratology 8188. (https://doi.org/10.1002/tera.1420340111)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gustavsson N, Wei SH, Hoang DN, Lao Y, Zhang Q, Radda GK, Rorsman P, Sudhof TC & Han W 2009 Synaptotagmin-7 is a principal Ca2+ sensor for Ca2+-induced glucagon exocytosis in pancreas. Journal of Physiology 11691178. (https://doi.org/10.1113/jphysiol.2008.168005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Heydemann A An overview of murine high fat diet as a model for type 2 diabetes mellitus. Journal of Diabetes Research 2902351. (https://doi.org/10.1155/2016/2902351)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kaaja R & Ronnemaa T 2008 Gestational diabetes: pathogenesis and consequences to mother and offspring. Review of Diabetic Studies 194202. (https://doi.org/10.1900/RDS.2008.5.194)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kalter H 1996 Reproductive toxicology in animals with induced and spontaneous diabetes. Reproductive Toxicology 417438. (https://doi.org/10.1016/s0890-6238(96)00129-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kampmann U, Madsen LR, Skajaa GO, Iversen DS, Moeller N & Ovesen P 2015 Gestational diabetes: a clinical update. World Journal of Diabetes 10651072. (https://doi.org/10.4239/wjd.v6.i8.1065)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lapolla A, Dalfra MG, Ragazzi E, De Cata AP & Fedele D 2011 New International Association of the Diabetes and Pregnancy Study Groups (IADPSG) recommendations for diagnosing gestational diabetes compared with former criteria: a retrospective study on pregnancy outcome. Diabetic Medicine 10741077. (https://doi.org/10.1111/j.1464-5491.2011.03351.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li H, Wei S, Cheng K, Gounko NV, Ericksen RE, Xu A, Hong W & Han W 2014 BIG3 inhibits insulin granule biogenesis and insulin secretion. EMBO Reports 714722. (https://doi.org/10.1002/embr.201338181)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Logan KM, Gale C, Hyde MJ, Santhakumaran S & Modi N 2017 Diabetes in pregnancy and infant adiposity: systematic review and meta-analysis. Archives of Disease in Childhood: Fetal and Neonatal Edition F65F72. (https://doi.org/10.1136/archdischild-2015-309750)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lowe WL Jr, Scholtens DM, Kuang A, Linder B, Lawrence JM, Lebenthal Y, McCance D, Hamilton J, Nodzenski M, Talbot O, et al. 2019 Hyperglycemia and adverse pregnancy outcome follow-up study (HAPO FUS): maternal gestational diabetes mellitus and childhood glucose metabolism. Diabetes Care 372380. (https://doi.org/10.2337/dc18-1646)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pasek RC & Gannon M 2013 Advancements and challenges in generating accurate animal models of gestational diabetes mellitus. American Journal of Physiology: Endocrinology and Metabolism E1327E1338. (https://doi.org/10.1152/ajpendo.00425.2013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shoelson SE, Herrero L & Naaz A 2007 Obesity, inflammation, and insulin resistance. Gastroenterology 21692180. (https://doi.org/10.1053/j.gastro.2007.03.059)

  • Turhan U, Yilmaz E, Gul M, Melekoglu R, Turkoz Y, Ozyalin F, Parlakpinar H & Simsek Y 2018 Investigation of the effect of gestational diabetes on fetal cardiac tissue in streptozotocin induced in rats. Acta Cirurgica Brasileira 306313. (https://doi.org/10.1590/s0102-865020180040000002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tutino GE, Tam WH, Yang X, Chan JC, Lao TT & Ma RC 2014 Diabetes and pregnancy: perspectives from Asia. Diabetic Medicine 302318. (https://doi.org/10.1111/dme.12396)

  • Winzell MS & Ahren B 2004 The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes (Supplement 3) S215S219. (https://doi.org/10.2337/diabetes.53.suppl_3.s215)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu KK & Huan Y 2008 Streptozotocin-induced diabetic models in mice and rats. Current Protocols in Pharmacology Unit 5.47. (https://doi.org/10.1002/0471141755.ph0547s40)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yamamoto JM, Kellett JE, Balsells M, Garcia-Patterson A, Hadar E, Sola I, Gich I, van der Beek EM, Castaneda-Gutierrez E, Heinonen S, et al. 2018 Gestational diabetes mellitus and diet: a systematic review and meta-analysis of randomized controlled trials examining the impact of modified dietary interventions on maternal glucose control and neonatal birth weight. Diabetes Care 13461361. (https://doi.org/10.2337/dc18-0102)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yew TW, Khoo CM, Thai AC, Kale AS, Yong EL & Tai ES 2014 The prevalence of gestational diabetes mellitus among Asian females is lower using the new 2013 World Health Organization diagnostic criteria. Endocrine Practice 10641069. (https://doi.org/10.4158/EP14028.OR)

    • PubMed
    • Search Google Scholar
    • Export Citation