Detrimental effects of uterine disease and lipopolysaccharide on luteal angiogenesis

in Journal of Endocrinology
View More View Less
  • 1 College of Veterinary Medicine, University of Duhok, Kurdistan Regional Government and Scientific Research, Kurdistan, Iraq
  • 2 School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
  • 3 School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK

Correspondence should be addressed to K J Woad: katie.woad@nottingham.ac.uk

*(Z A Mohammed and R S Robinson contributed equally to this work)

Restricted access

Reproductive tract inflammatory disease (RTID) commonly occurs after the traumatic events of parturition and adversely affects follicular function. This study is the first to describe the cellular and steroidogenic characteristics of corpora lutea from cattle with RTID and the effects of pathogen-associated molecular patterns (PAMPs) on luteal angiogenesis and function in vitro. Luteal weight (P < 0.05) and progesterone content (P < 0.05) were reduced (1.2-fold) in cows with RTID, accompanied by reduced CYP11A (P < 0.05), HSD3B (P < 0.01) and STAR (P < 0.01) protein expression. Immunohistochemistry revealed that luteal vascularity (VWF) and pericyte (ACTA2) coverage were >3-fold lower in RTID cows (P < 0.05). To link these observations to bacterial infection and determine specificity of action, a physiologically relevant luteal angiogenesis culture system examined the effects of PAMPs on endothelial cell (EC) network formation and progesterone production, in the presence of pro-angiogenic factors. Luteal EC networks were reduced ≤95% (P < 0.05) by lipopolysaccharide (LPS, toll-like receptor (TLR) 4 agonist) but not by TLR2 agonists lipoteichoic acid or peptidoglycan. Conversely, progesterone production and steroidogenic protein expression were unaffected by PAMPs (P > 0.05). Moreover, the adverse effect of LPS on luteal EC networks was dose-dependent and effective from 1 ng/mL (P < 0.05), while few EC networks were present above 10 ng/mL LPS (P < 0.001). LPS reduced proliferation (P < 0.05) and increased apoptosis of EC (P < 0.001). The specific TLR4 inhibitor TAK242 reversed the effects of LPS on EC networks. In conclusion, luteal vasculature is adversely sensitive to LPS acting via TLR4, therefore ovarian exposure to LPS from any Gram-negative bacterial infection will profoundly influence subsequent reproductive potential.

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 1162 1162 75
Full Text Views 84 84 4
PDF Downloads 27 27 7
  • Akira S, Uematsu S & Takeuchi O 2006 Pathogen recognition and innate immunity. Cell 124 783801. (https://doi.org/10.1016/j.cell.2006.02.015)

  • Ali I, Nanchal R, Husnain F, Audi S, Konduri GG, Densmore JC, Medhora M & Jacobs ER 2013 Hypoxia preconditioning increases survival and decreases expression of toll-like receptor 4 in pulmonary artery endothelial cells exposed to lipopolysaccharide. Pulmonary Circulation 3 578588. (https://doi.org/10.1086/674337)

    • Search Google Scholar
    • Export Citation
  • Alon T, Hemo I, Itin A, Pe'er J, Stone J & Keshet E 1995 Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nature Medicine 1 10241028. (https://doi.org/10.1038/nm1095-1024)

    • Search Google Scholar
    • Export Citation
  • Bannerman DD, Sathyamoorthy M & Goldblum SE 1998 Bacterial lipopolysaccharide disrupts endothelial monolayer integrity and survival signaling events through caspase cleavage of adherens junction proteins. Journal of Biological Chemistry 273 3537135380. (https://doi.org/10.1074/jbc.273.52.35371)

    • Search Google Scholar
    • Export Citation
  • Battaglia DF, Krasa HB, Padmanabhan V, Viguié C & Karsch FJ 2000 Endocrine alterations that underlie endotoxin-induced disruption of the follicular phase in Ewes1. Biology of Reproduction 62 4553. (https://doi.org/10.1095/biolreprod62.1.45)

    • Search Google Scholar
    • Export Citation
  • Bondurant RH 1999 Inflammation in the bovine female reproductive tract. Journal of Animal Science 77 (Supplement 2) 101110. (https://doi.org/10.2527/1999.77suppl_2101x)

    • Search Google Scholar
    • Export Citation
  • Bonnin P, Huynh L, Haridon RL, Chene N & Martal J 1999 Transport of uterine PGF2α to the ovaries by systemic circulation and local lymphovenous–arterial diffusion during luteolysis in sheep. Reproduction 116 199210. (https://doi.org/10.1530/jrf.0.1160199)

    • Search Google Scholar
    • Export Citation
  • Borges AM, Healey GD & Sheldon IM 2012 Explants of intact endometrium to model bovine innate immunity and inflammation ex vivo. American Journal of Reproductive Immunology 67 526539. (https://doi.org/10.1111/j.1600-0897.2012.01106.x)

    • Search Google Scholar
    • Export Citation
  • Bromfield JJ & Sheldon IM 2011 Lipopolysaccharide initiates inflammation in bovine granulosa cells via the TLR4 pathway and perturbs oocyte meiotic progression in vitro. Endocrinology 152 50295040. (https://doi.org/10.1210/en.2011-1124)

    • Search Google Scholar
    • Export Citation
  • Chen Y, Lu N, Ling Y, Gao Y, Wang L, Sun Y, Qi Q, Feng F, Liu W, Liu W, et al. 2009 Wogonoside inhibits lipopolysaccharide-induced angiogenesis in vitro and in vivo via toll-like receptor 4 signal transduction. Toxicology 259 1017. (https://doi.org/10.1016/j.tox.2009.01.010)

    • Search Google Scholar
    • Export Citation
  • Cohn ZJ, Kim A, Huang L, Brand J & Wang H 2010 Lipopolysaccharide-induced inflammation attenuates taste progenitor cell proliferation and shortens the life span of taste bud cells. BMC Neuroscience 11 72. (https://doi.org/10.1186/1471-2202-11-72)

    • Search Google Scholar
    • Export Citation
  • Couet J, Martel C, Dupont E, Luu-The VAN, Sirard MA, Zhao HF, Pelletier G & Labrie F 1990 Changes in 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase messenger ribonucleic acid, activity and protein levels during the estrous cycle in the bovine ovary. Endocrinology 127 21412148. (https://doi.org/10.1210/endo-127-5-2141)

    • Search Google Scholar
    • Export Citation
  • Dauphinee SM & Karsan A 2006 Lipopolysaccharide signaling in endothelial cells. Laboratory Investigation 86 922. (https://doi.org/10.1038/labinvest.3700366)

    • Search Google Scholar
    • Export Citation
  • Ekdahl CT, Claasen JH, Bonde S, Kokaia Z & Lindvall O 2003 Inflammation is detrimental for neurogenesis in adult brain. PNAS 100 1363213637. (https://doi.org/10.1073/pnas.2234031100)

    • Search Google Scholar
    • Export Citation
  • Fadhillah, Yoshioka S, Nishimura R & Okuda K 2014 Hypoxia promotes progesterone synthesis during luteinization in bovine granulosa cells. Journal of Reproduction and Development 60 194201. (https://doi.org/10.1262/jrd.2014-014)

    • Search Google Scholar
    • Export Citation
  • Ferrara N, Gerber HP & LeCouter J 2003 The biology of VEGF and its receptors. Nature Medicine 9 669676. (https://doi.org/10.1038/nm0603-669)

  • Frey EA & Finlay BB 1998 Lipopolysaccharide induces apoptosis in a bovine endothelial cell line via a soluble CD14 dependent pathway. Microbial Pathogenesis 24 101109. (https://doi.org/10.1006/mpat.1997.0178)

    • Search Google Scholar
    • Export Citation
  • Fujita M, Kuwano K, Kunitake R, Hagimoto N, Miyazaki H, Kaneko Y, Kawasaki M, Maeyama T & Hara N 1998 Endothelial cell apoptosis in lipopolysaccharide-induced lung injury in mice. International Archives of Allergy and Immunology 117 202208. (https://doi.org/10.1159/000024011)

    • Search Google Scholar
    • Export Citation
  • Gabler C, Drillich M, Fischer C, Holder C, Heuwieser W & Einspanier R 2009 Endometrial expression of selected transcripts involved in prostaglandin synthesis in cows with endometritis. Theriogenology 71 9931004. (https://doi.org/10.1016/j.theriogenology.2008.11.009)

    • Search Google Scholar
    • Export Citation
  • Gadsby JE, Tyson Nipper AM, Faircloth HA, D'Annibale-Tolhurst M, Chang J, Farin PW, Sheldon IM & Poole DH 2017 Toll-like receptor and related cytokine mRNA expression in bovine corpora lutea during the oestrous cycle and pregnancy. Reproduction in Domestic Animals 52 495504. (https://doi.org/10.1111/rda.12940)

    • Search Google Scholar
    • Export Citation
  • Gilbert RO, Shin ST, Guard CL, Erb HN & Frajblat M 2005 Prevalence of endometritis and its effects on reproductive performance of dairy cows. Theriogenology 64 18791888. (https://doi.org/10.1016/j.theriogenology.2005.04.022)

    • Search Google Scholar
    • Export Citation
  • Giuliodori MJ, Magnasco RP, Becu-Villalobos D, Lacau-Mengido IM, Risco CA & de la Sota RL 2013 Metritis in dairy cows: risk factors and reproductive performance. Journal of Dairy Science 96 36213631. (https://doi.org/10.3168/jds.2012-5922)

    • Search Google Scholar
    • Export Citation
  • Grant E, Lilly ST, Herath S & Sheldon IM 2007 Escherichia coli lipopolysaccharide modulates bovine luteal cell function. Veterinary Record 161 695696. (https://doi.org/10.1136/vr.161.20.695)

    • Search Google Scholar
    • Export Citation
  • Grote K, Schuett H, Salguero G, Grothusen C, Jagielska J, Drexler H, Muhlradt PF & Schieffer B 2010 Toll-like receptor 2/6 stimulation promotes angiogenesis via GM-CSF as a potential strategy for immune defense and tissue regeneration. Blood 115 25432552. (https://doi.org/10.1182/blood-2009-05-224402)

    • Search Google Scholar
    • Export Citation
  • Hagar JA, Powell DA, Aachoui Y, Ernst RK & Miao EA 2013 Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341 12501253. (https://doi.org/10.1126/science.1240988)

    • Search Google Scholar
    • Export Citation
  • Herath S, Williams EJ, Lilly ST, Gilbert RO, Dobson H, Bryant CE & Sheldon IM 2007 Ovarian follicular cells have innate immune capabilities that modulate their endocrine function. Reproduction 134 683693. (https://doi.org/10.1530/REP-07-0229)

    • Search Google Scholar
    • Export Citation
  • Hernandez-Gonzalez I, Gonzalez-Robayna I, Shimada M, Wayne CM, Ochsner SA, White L & Richards JS 2006 Gene expression profiles of cumulus cell oocyte complexes during ovulation reveal cumulus cells express neuronal and immune-related genes: does this expand their role in the ovulation process? Molecular Endocrinology 20 13001321. (https://doi.org/10.1210/me.2005-0420)

    • Search Google Scholar
    • Export Citation
  • Herzog K, Struve K, Kastelic JP, Piechotta M, Ulbrich SE, Pfarrer C, Shirasuna K, Shimizu T, Miyamoto A & Bollwein H 2012 Escherichia coli lipopolysaccharide administration transiently suppresses luteal structure and function in diestrous cows. Reproduction 144 467476. (https://doi.org/10.1530/REP-12-0138)

    • Search Google Scholar
    • Export Citation
  • Hotchkiss RS, Swanson PE, Freeman BD, Tinsley KW, Cobb JP, Matuschak GM, Buchman TG & Karl IE 1999 Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Critical Care Medicine 27 12301251. (https://doi.org/10.1097/00003246-199907000-00002)

    • Search Google Scholar
    • Export Citation
  • Ireland JJ, Murphee RL & Coulson PB 1980 Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum. Journal of Dairy Science 63 155160. (https://doi.org/10.3168/jds.S0022-0302(80)82901-8)

    • Search Google Scholar
    • Export Citation
  • Kawamoto T, Ii M, Kitazaki T, Iizawa Y & Kimura H 2008 TAK-242 selectively suppresses toll-like receptor 4-signaling mediated by the intracellular domain. European Journal of Pharmacology 584 4048. (https://doi.org/10.1016/j.ejphar.2008.01.026)

    • Search Google Scholar
    • Export Citation
  • Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi-Takamura S, Miyake K, Zhang J, Lee WP, Muszyński A, et al. 2013 Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341 12461249. (https://doi.org/10.1126/science.1240248)

    • Search Google Scholar
    • Export Citation
  • Knickerbocker JJ, Wiltbank MC & Niswender GD 1988 Mechanisms of luteolysis in domestic livestock. Domestic Animal Endocrinology 5 91107. (https://doi.org/10.1016/0739-7240(88)90011-2)

    • Search Google Scholar
    • Export Citation
  • Koide N, Abe K, Narita K, Kato Y, Sugiyama T, Jiang GZ & Yokochi T 1996 Apoptotic cell death of vascular endothelial cells and renal tubular cells in the generalized Shwartzman reaction. FEMS Immunology and Medical Microbiology 16 205211. (https://doi.org/10.1111/j.1574-695X.1996.tb00137.x)

    • Search Google Scholar
    • Export Citation
  • Lavon Y, Leitner G, Moallem U, Klipper E, Voet H, Jacoby S, Glick G, Meidan R & Wolfenson D 2011 Immediate and carryover effects of Gram-negative and Gram-positive toxin-induced mastitis on follicular function in dairy cows. Theriogenology 76 942953. (https://doi.org/10.1016/j.theriogenology.2011.05.001)

    • Search Google Scholar
    • Export Citation
  • Luttgenau J, Lingemann B, Wellnitz O, Hankele AK, Schmicke M, Ulbrich SE, Bruckmaier RM & Bollwein H 2016 Repeated intrauterine infusions of lipopolysaccharide alter gene expression and lifespan of the bovine corpus luteum. Journal of Dairy Science 99 66396653. (https://doi.org/10.3168/jds.2015-10806)

    • Search Google Scholar
    • Export Citation
  • Ma B, Dohle E, Li M & Kirkpatrick CJ 2017 TLR4 stimulation by LPS enhances angiogenesis in a co-culture system consisting of primary human osteoblasts and outgrowth endothelial cells. Journal of Tissue Engineering and Regenerative Medicine 11 17791791. (https://doi.org/10.1002/term.2075)

    • Search Google Scholar
    • Export Citation
  • Magata F, Horiuchi M, Miyamoto A & Shimizu T 2014 Lipopolysaccharide (LPS) inhibits steroid production in theca cells of bovine follicles in vitro: distinct effect of LPS on theca cell function in pre- and post-selection follicles. Journal of Reproduction and Development 60 280287. (https://doi.org/10.1262/jrd.2013-124)

    • Search Google Scholar
    • Export Citation
  • Mann GE 2009 Corpus luteum size and plasma progesterone concentration in cows. Animal Reproduction Science 115 296299. (https://doi.org/10.1016/j.anireprosci.2008.11.006)

    • Search Google Scholar
    • Export Citation
  • Mann GE & Lamming GE 2001 Relationship between maternal endocrine environment, early embryo development and inhibition of the luteolytic mechanism in cows. Reproduction 121 175180. (https://doi.org/10.1530/rep.0.1210175)

    • Search Google Scholar
    • Export Citation
  • Mateus L, da Costa LL, Bernardo F & Silva JR 2002 Influence of puerperal uterine infection on uterine involution and postpartum ovarian activity in dairy cows. Reproduction in Domestic Animals 37 3135. (https://doi.org/10.1046/j.1439-0531.2002.00317.x)

    • Search Google Scholar
    • Export Citation
  • Mateus L, Lopes da Costa L, Diniz P & Ziecik AJ 2003 Relationship between endotoxin and prostaglandin (PGE2 and PGFM) concentrations and ovarian function in dairy cows with puerperal endometritis. Animal Reproduction Science 76 143154. (https://doi.org/10.1016/s0378-4320(02)00248-8)

    • Search Google Scholar
    • Export Citation
  • McDougall S 2001 Effect of intrauterine antibiotic treatment on reproductive performance of dairy cows following periparturient disease. New Zealand Veterinary Journal 49 150158. (https://doi.org/10.1080/00480169.2001.36223)

    • Search Google Scholar
    • Export Citation
  • Mohammed ZA, Mann GE & Robinson RS 2019 Impact of endometritis on post-partum ovarian cyclicity in dairy cows. Veterinary Journal 248 813. (https://doi.org/10.1016/j.tvjl.2019.03.008)

    • Search Google Scholar
    • Export Citation
  • Munshi N, Fernandis AZ, Cherla RP, Park IW & Ganju RK 2002 Lipopolysaccharide-induced apoptosis of endothelial cells and its inhibition by vascular endothelial growth factor. Journal of Immunology 168 58605866. (https://doi.org/10.4049/jimmunol.168.11.5860)

    • Search Google Scholar
    • Export Citation
  • Nicholls A, Payne L, Robinson RS, Coffey T & Woad KJ 2016 Disease takes its Toll on reproduction: toll-like receptors and the bovine corpus luteum. Reproduction Abstracts 3 P037. (https://doi.org/10.1530/repabs.3.P037)

    • Search Google Scholar
    • Export Citation
  • Nwachukwu CU 2019 The role and regulation of angiogenesis during key stages of ovarian follicle development. PhD thesis. Nottingham, UK: University of Nottingham. (available at: http://eprints.nottingham.ac.uk/id/eprint/56432)

    • Search Google Scholar
    • Export Citation
  • Pescador N, Soumano K, Stocco DM, Price CA & Murphy BD 1996 Steroidogenic acute regulatory protein in bovine corpora lutea. Biology of Reproduction 55 485491. (https://doi.org/10.1095/biolreprod55.2.485)

    • Search Google Scholar
    • Export Citation
  • Plendl J, Neumüller C & Sinowatz F 1996 Differences of microvascular endothelium in the bovine corpus luterum of pregnancy and the corpus luteum of the estrous cycle. Biology of the Cell 87 179188. (https://doi.org/10.1111/j.1768-322X.1996.tb00979.x)

    • Search Google Scholar
    • Export Citation
  • Price JC, Bromfield JJ & Sheldon IM 2013 Pathogen-associated molecular patterns initiate inflammation and perturb the endocrine function of bovine granulosa cells From ovarian dominant follicles via TLR2 and TLR4 pathways. Endocrinology 154 33773386. (https://doi.org/10.1210/en.2013-1102)

    • Search Google Scholar
    • Export Citation
  • Robinson RS, Hammond AJ, Nicklin LT, Schams D, Mann GE & Hunter MG 2006 Endocrine and cellular characteristics of corpora lutea from cows with a delayed post-ovulatory progesterone rise. Domestic Animal Endocrinology 31 154172. (https://doi.org/10.1016/j.domaniend.2005.10.003)

    • Search Google Scholar
    • Export Citation
  • Robinson RS, Hammond AJ, Mann GE & Hunter MG 2008 A novel physiological culture system that mimics luteal angiogenesis. Reproduction 135 405413. (https://doi.org/10.1530/REP-07-0370)

    • Search Google Scholar
    • Export Citation
  • Robinson RS, Woad KJ, Hammond AJ, Laird M, Hunter MG & Mann GE 2009 Angiogenesis and vascular function in the ovary. Reproduction 138 869881. (https://doi.org/10.1530/REP-09-0283)

    • Search Google Scholar
    • Export Citation
  • Rogero MM & Calder PC 2018 Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients 10 432. (https://doi.org/10.3390/nu10040432)

    • Search Google Scholar
    • Export Citation
  • Saber T, Veale DJ, Balogh E, McCormick J, NicAnUltaigh S, Connolly M & Fearon U 2011 Toll-like receptor 2 induced angiogenesis and invasion is mediated through the Tie2 signalling pathway in rheumatoid arthritis. PLoS ONE 6 e23540. (https://doi.org/10.1371/journal.pone.0023540)

    • Search Google Scholar
    • Export Citation
  • Schneider CA, Rasband WS & Eliceiri KW 2012 NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9 671675. (https://doi.org/10.1038/nmeth.2089)

    • Search Google Scholar
    • Export Citation
  • Sheldon IM, Noakes DE, Rycroft AN, Pfeiffer DU & Dobson H 2002 Influence of uterine bacterial contamination after parturition on ovarian dominant follicle selection and follicle growth and function in cattle. Reproduction 123 837845. (https://doi.org/10.1530/rep.0.1230837)

    • Search Google Scholar
    • Export Citation
  • Sheldon IM, Cronin J, Goetze L, Donofrio G & Schuberth HJ 2009 Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle. Biology of Reproduction 81 10251032. (https://doi.org/10.1095/biolreprod.109.077370)

    • Search Google Scholar
    • Export Citation
  • Shimada M, Hernandez-Gonzalez I, Gonzalez-Robanya I & Richards JS 2006 Induced expression of pattern recognition receptors in cumulus oocyte complexes: novel evidence for innate immune-like functions during ovulation. Molecular Endocrinology 20 32283239. (https://doi.org/10.1210/me.2006-0194)

    • Search Google Scholar
    • Export Citation
  • Shimizu T, Echizenya R & Miyamoto A 2016 Effect of lipopolysaccharide on progesterone production during luteinization of granulosa and theca cells in vitro. Journal of Biochemical and Molecular Toxicology 30 206211. (https://doi.org/10.1002/jbt.21783)

    • Search Google Scholar
    • Export Citation
  • Shimizu T, Miyauchi K, Shirasuna K, Bollwein H, Magata F, Murayama C & Miyamoto A 2012 Effects of lipopolysaccharide (LPS) and peptidoglycan (PGN) on estradiol production in bovine granulosa cells from small and large follicles. Toxicology In Vitro 26 11341142. (https://doi.org/10.1016/j.tiv.2012.06.014)

    • Search Google Scholar
    • Export Citation
  • Shin MR, Kang SK, Kim YS, Lee SY, Hong SC & Kim EC 2015 TNF-alpha and LPS activate angiogenesis via VEGF and SIRT1 signalling in human dental pulp cells. International Endodontic Journal 48 705716. (https://doi.org/10.1111/iej.12396)

    • Search Google Scholar
    • Export Citation
  • Takashima K, Matsunaga N, Yoshimatsu M, Hazeki K, Kaisho T, Uekata M, Hazeki O, Akira S, Iizawa Y & Ii M 2009 Analysis of binding site for the novel small-molecule TLR4 signal transduction inhibitor TAK-242 and its therapeutic effect on mouse sepsis model. British Journal of Pharmacology 157 12501262. (https://doi.org/10.1111/j.1476-5381.2009.00297.x)

    • Search Google Scholar
    • Export Citation
  • Tsang PC, Walton JS & Hansel W 1990 Oxytocin-specific RNA, oxytocin and progesterone concentrations in corpora lutea of heifers treated with oxytocin. Journal of Reproduction and Fertility 89 7784. (https://doi.org/10.1530/jrf.0.0890077)

    • Search Google Scholar
    • Export Citation
  • Williams EJ, Fischer DP, Noakes DE, England GCW, Rycroft A, Dobson H & Sheldon IM 2007 The relationship between uterine pathogen growth density and ovarian function in the postpartum dairy cow. Theriogenology 68 549559. (https://doi.org/10.1016/j.theriogenology.2007.04.056)

    • Search Google Scholar
    • Export Citation
  • Williams EJ, Sibley K, Miller AN, Lane EA, Fishwick J, Nash DM, Herath S, England GC, Dobson H & Sheldon IM 2008 The effect of Escherichia coli lipopolysaccharide and tumour necrosis factor alpha on ovarian function. American Journal of Reproductive Immunology 60 462473. (https://doi.org/10.1111/j.1600-0897.2008.00645.x)

    • Search Google Scholar
    • Export Citation
  • Woad KJ & Robinson RS 2016 Luteal angiogenesis and its control. Theriogenology 86 221228. (https://doi.org/10.1016/j.theriogenology.2016.04.035)

    • Search Google Scholar
    • Export Citation
  • Woad KJ, Hunter MG, Mann GE, Laird M, Hammond AJ & Robinson RS 2012 Fibroblast growth factor 2 is a key determinant of vascular sprouting during bovine luteal angiogenesis. Reproduction 143 3543. (https://doi.org/10.1530/REP-11-0277)

    • Search Google Scholar
    • Export Citation
  • Xia S, Menden HL, Korfhagen TR, Kume T & Sampath V 2018 Endothelial immune activation programmes cell-fate decisions and angiogenesis by inducing angiogenesis regulator DLL4 through TLR4-ERK-FOXC2 signalling. Journal of Physiology 596 13971417. (https://doi.org/10.1113/JP275453)

    • Search Google Scholar
    • Export Citation
  • Yildirim C, Favre J, Weijers EM, Fontijn RD, van Wijhe MH, van Vliet SJ, Boon RA, Koolwijk P, van der Pouw Kraan TC & Horrevoets AJ 2015 IFN-beta affects the angiogenic potential of circulating angiogenic cells by activating calpain 1. American Journal of Physiology: Heart and Circulatory Physiology 309 H1667H1678. (https://doi.org/10.1152/ajpheart.00810.2014)

    • Search Google Scholar
    • Export Citation
  • Zhou M, McFarland-Mancini MM, Funk HM, Husseinzadeh N, Mounajjed T & Drew AF 2009 Toll-like receptor expression in normal ovary and ovarian tumors. Cancer Immunology, Immunotherapy 58 13751385. (https://doi.org/10.1007/s00262-008-0650-y)

    • Search Google Scholar
    • Export Citation
  • Zielniok K, Motyl T & Gajewska M 2014 Functional interactions between 17beta-estradiol and progesterone regulate autophagy during acini formation by bovine mammary epithelial cells in 3D cultures. BioMed Research International 2014 382653. (https://doi.org/10.1155/2014/382653)

    • Search Google Scholar
    • Export Citation
  • Zuo T, Zhu M, Xu W, Wang Z & Song H 2017 Iridoids with genipin stem nucleus inhibit lipopolysaccharide-induced inflammation and oxidative stress by blocking the NF-κB pathway in polycystic ovary syndrome. Cellular Physiology and Biochemistry 43 18551865. (https://doi.org/10.1159/000484074)

    • Search Google Scholar
    • Export Citation