Liraglutide and sitagliptin counter beta- to alpha-cell transdifferentiation in diabetes

in Journal of Endocrinology
Authors:
Neil Tanday SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK

Search for other papers by Neil Tanday in
Current site
Google Scholar
PubMed
Close
,
Peter R Flatt SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK

Search for other papers by Peter R Flatt in
Current site
Google Scholar
PubMed
Close
,
Nigel Irwin SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK

Search for other papers by Nigel Irwin in
Current site
Google Scholar
PubMed
Close
, and
R Charlotte Moffett SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK

Search for other papers by R Charlotte Moffett in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to N Irwin: n.irwin@ulster.ac.uk
Restricted access
Rent on DeepDyve

Sign up for journal news

Transdifferentiation of beta- to alpha-cells has been implicated in the pathogenesis of diabetes. To investigate the impact of contrasting aetiologies of beta-cell stress, as well as clinically approved incretin therapies on this process, lineage tracing of beta-cells in transgenic Ins1 Cre/+/Rosa26-eYFP mice was investigated. Diabetes-like syndromes were induced by streptozotocin (STZ), high fat feeding (HFF) or hydrocortisone (HC), and effects of treatment with liraglutide or sitagliptin were investigated. Mice developed the characteristic metabolic features associated with beta-cell destruction or development of insulin resistance. Liraglutide was effective in preventing weight gain in HFF mice, with both treatments decreasing energy intake in STZ and HC mice. Treatment intervention also significantly reduced blood glucose levels in STZ and HC mice, as well as increasing either plasma or pancreatic insulin while decreasing circulating or pancreatic glucagon in all models. The recognised changes in pancreatic morphology induced by STZ, HFF or HC were partially, or fully, reversed by liraglutide and sitagliptin, and related to advantageous effects on alpha- and beta-cell growth and survival. More interestingly, induction of diabetes-like phenotype, regardless of pathogenesis, led to increased numbers of beta-cells losing their identity, as well as decreased expression of Pdx1 within beta-cells. Both treatment interventions, and especially liraglutide, countered detrimental islet cell transitioning effects in STZ and HFF mice. Only liraglutide imparted benefits on beta- to alpha-cell transdifferentiation in HC mice. These data demonstrate that beta- to alpha-cell transdifferentiation is a common consequence of beta-cell destruction or insulin resistance and that clinically approved incretin-based drugs effectively limit this.

 

  • Collapse
  • Expand
  • Accili D, Ahren B, Boitard C, Cerasi E, Henquin JC & Seino S 2010 What ails the beta-cell? Diabetes, Obesity and Metabolism 12 (Supplement 2) 13. (https://doi.org/10.1111/j.1463-1326.2010.01296.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Augstein P, Naselli G, Loudovaris T, Hawthorne WJ, Campbell P, Bandala-Sanchez E, Rogers K, Heinke P, Thomas HE, Kay TW, et al. 2015 Localization of dipeptidyl peptidase-4 (CD26) to human pancreatic ducts and islet alpha cells. Diabetes Research and Clinical Practice 110 291300. (https://doi.org/10.1016/j.diabres.2015.10.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Baggio LL & Drucker DJ 2007 Biology of incretins: GLP-1 and GIP. Gastroenterology 132 21312157. (https://doi.org/10.1053/j.gastro.2007.03.054)

  • Bugliani M, Syed F, Paula FMM, Omar BA, Suleiman M, Mossuto S, Grano F, Cardarelli F, Boggi U, Vistoli F, et al. 2018 DPP-4 is expressed in human pancreatic beta cells and its direct inhibition improves beta cell function and survival in type 2 diabetes. Molecular and Cellular Endocrinology 473 186193. (https://doi.org/10.1016/j.mce.2018.01.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA & Butler PC 2003 β-Cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52 102110. (https://doi.org/10.2337/diabetes.52.1.102)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cinti F, Bouchi R, Kim-Muller JY, Ohmura Y, Sandoval PR, Masini M, Marselli L, Suleiman M, Ratner LE, Marchetti P, et al. 2016 Evidence of β-cell dedifferentiation in human type 2 diabetes. Journal of Clinical Endocrinology and Metabolism 101 10441054. (https://doi.org/10.1210/jc.2015-2860)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Collombat P, Hecksher-Sorensen J, Krull J, Berger J, Riedel D, Herrera PL, Serup P & Mansouri A 2007 Embryonic endocrine pancreas and mature beta cells acquire alpha and PP cell phenotypes upon Arx misexpression. Journal of Clinical Investigation 117 961970. (https://doi.org/10.1172/JCI29115)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Collombat P, Xu X, Ravassard P, Sosa-Pineda B, Dussaud S, Billestrup N, Madsen OD, Serup P, Heimberg H & Mansouri A 2009 The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into α and subsequently β cells. Cell 138 449462. (https://doi.org/10.1016/j.cell.2009.05.035)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Courtney M, Gjernes E, Druelle N, Ravaud C, Vieira A, Ben-Othman N, Pfeifer A, Avolio F, Leuckx G, Lacas-Gervais S, et al. 2013 The inactivation of Arx in pancreatic α-cells triggers their neogenesis and conversion into functional β-like cells. PLoS Genetics 9 e1003934. (https://doi.org/10.1371/journal.pgen.1003934)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Diedisheim M, Oshima M, Albagli O, Huldt CW, Ahlstedt I, Clausen M, Menon S, Aivazidis A, Andreasson AC, Haynes WG, et al. 2018 Modeling human pancreatic beta cell dedifferentiation. Molecular Metabolism 10 7486. (https://doi.org/10.1016/j.molmet.2018.02.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Donath MY & Halban PA 2004 Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia 47 581589. (https://doi.org/10.1007/s00125-004-1336-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Drucker DJ & Nauck MA 2006 The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368 16961705. (https://doi.org/10.1016/S0140-6736(06)69705-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ehses JA, Pelech SL, Pederson RA & McIntosh CH 2002 Glucose-dependent insulinotropic polypeptide activates the Raf-Mek1/2-ERK1/2 module via a cyclic AMP/cAMP-dependent protein kinase/Rap1-mediated pathway. Journal of Biological Chemistry 277 3708837097. (https://doi.org/10.1074/jbc.M205055200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Eizirik DL, Colli ML & Ortis F 2009 The role of inflammation in insulitis and β-cell loss in type 1 diabetes. Nature Reviews: Endocrinology 5 219226. (https://doi.org/10.1038/nrendo.2009.21)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Farilla L, Bulotta A, Hirshberg B, Li Calzi S, Khoury N, Noushmehr H, Bertolotto C, Di Mario U, Harlan DM & Perfetti R 2003 Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology 144 51495158. (https://doi.org/10.1210/en.2003-0323)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Flatt PR & Bailey CJ 1981 Abnormal plasma glucose and insulin responses in heterozygous lean (ob/+) mice. Diabetologia 20 573577. (https://doi.org/10.1007/bf00252768)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gao T, McKenna B, Li C, Reichert M, Nguyen J, Singh T, Yang C, Pannikar A, Doliba N, Zhang T, et al. 2014 Pdx1 maintains β cell identity and function by repressing an α cell program. Cell Metabolism 19 259271. (https://doi.org/10.1016/j.cmet.2013.12.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gault VA, Lennox R & Flatt PR 2015a Sitagliptin, a dipeptidyl peptidase-4 inhibitor, improves recognition memory, oxidative stress and hippocampal neurogenesis and upregulates key genes involved in cognitive decline. Diabetes, Obesity and Metabolism 17 403413. (https://doi.org/10.1111/dom.12432)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gault VA, Martin CM, Flatt PR, Parthsarathy V & Irwin N 2015 bXenin-25 (Lys 13 PAL): a novel long-acting acylated analogue of xenin-25 with promising antidiabetic potential. Acta Diabetologica 52 461471. (https://doi.org/10.1007/s00592-014-0681-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gershengorn MC, Hardikar AA, Wei C, Geras-Raaka E, Marcus-Samuels B & Raaka BM 2004 Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 306 22612264. (https://doi.org/10.1126/science.1101968)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ghanim H, Green K & Dandona P 2019 Liraglutide and dapagliflozin induce an increase in plasma GLP-1 and GLP-2 concentrations. Diabetes 68 (Suppl 1) 1034-P. (https://doi.org/10.2337/db19-1034-P)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gu C, Stein GH, Pan N, Goebbels S, Hörnberg H, Nave KA, Herrera P, White P, Kaestner KH, Sussel L, et al. 2010 Pancreatic β cells require NeuroD to achieve and maintain functional maturity. Cell Metabolism 11 298310. (https://doi.org/10.1016/j.cmet.2010.03.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hart AW, Mella S, Mendrychowski J, van Heyningen V & Kleinjan DA 2013 The developmental regulator Pax6 is essential for maintenance of islet cell function in the adult mouse pancreas. PLoS ONE 8 e54173. (https://doi.org/10.1371/journal.pone.0054173)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hendarto H, Inoguchi T, Maeda Y, Ikeda N, Zheng J, Takei R, Yokomizo H, Hirata E, Sonoda N & Takayanagi R 2012 GLP-1 analog liraglutide protects against oxidative stress and albuminuria in streptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases. Metabolism: Clinical and Experimental 61 14221434. (https://doi.org/10.1016/j.metabol.2012.03.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huising MO, Lee S & van der Meulen T 2018 Evidence for a neogenic niche at the periphery of pancreatic islets. BioEssays 40 e1800119. (https://doi.org/10.1002/bies.201800119)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kitamura T 2013 The role of FOXO1 in β-cell failure and type 2 diabetes mellitus. Nature Reviews: Endocrinology 9 615623. (https://doi.org/10.1038/nrendo.2013.157)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li Y, Cao X, Li LX, Brubaker PL, Edlund H & Drucker DJ 2005 β-Cell Pdx1 expression is essential for the glucoregulatory, proliferative, and cytoprotective actions of glucagon-like peptide-1. Diabetes 54 482491. (https://doi.org/10.2337/diabetes.54.2.482)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lund A, Vilsbøll T, Bagger JI, Holst JJ & Knop FK 2011 The separate and combined impact of the intestinal hormones, GIP, GLP-1, and GLP-2, on glucagon secretion in type 2 diabetes. American Journal of Physiology: Endocrinology and Metabolism 300 E1038E1046. (https://doi.org/10.1152/ajpendo.00665.2010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maida A, Hansotia T, Longuet C, Seino Y & Drucker DJ 2009 Differential importance of glucose-dependent insulinotropic polypeptide vs glucagon-like peptide 1 receptor signaling for beta cell survival in mice. Gastroenterology 137 21462157. (https://doi.org/10.1053/j.gastro.2009.09.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mest H & Mentlein R 2005 Dipeptidyl peptidase inhibitors as new drugs for the treatment of type 2 diabetes Diabetologia 48 616620.

  • Moffett RC, Vasu S, Thorens B, Drucker DJ & Flatt PR 2014 Incretin receptor null mice reveal key role of GLP-1 but not GIP in pancreatic beta cell adaptation to pregnancy. PLoS ONE 9 e96863. (https://doi.org/10.1371/journal.pone.0096863)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • O’Harte FPM, Parthsarathy V, Hogg C & Flatt PR 2018 Long-term treatment with acylated analogues of apelin-13 amide ameliorates diabetes and improves lipid profile of high-fat fed mice. PLoS ONE 13 e0202350. (https://doi.org/10.1371/journal.pone.0202350)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pivonello R, De Leo M, Vitale P, Cozzolino A, Simeoli C, De Martino MC, Lombardi G & Colao A 2010 Pathophysiology of diabetes mellitus in Cushing’s syndrome. Neuroendocrinology 92 (Suppl 1) 7781. (https://doi.org/10.1159/000314319)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Porter DW, Kerr BD, Flatt PR, Holscher C & Gault VA 2010 Four weeks administration of liraglutide improves memory and learning as well as glycaemic control in mice with high fat dietary-induced obesity and insulin resistance. Diabetes, Obesity and Metabolism 12 891899. (https://doi.org/10.1111/j.1463-1326.2010.01259.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rosenstock J, Inzucchi SE, Seufert J, Fleck PR, Wilson CA & Mekki Q 2010 Initial combination therapy with alogliptin and pioglitazone in drug-naive patients with type 2 diabetes. Diabetes Care 33 24062408. (https://doi.org/10.2337/dc10-0159)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rutter GA, Pullen TJ, Hodson DJ & Martinez-Sanchez A 2015 Pancreatic β-cell identity, glucose sensing and the control of insulin secretion. Biochemical Journal 466 203218. (https://doi.org/10.1042/BJ20141384)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Spijker HS, Song H, Ellenbroek JH, Roefs MM, Engelse MA, Bos E, Koster AJ, Rabelink TJ, Hansen BC, Clark A, et al. 2015 Loss of beta-cell identity occurs in type 2 diabetes and is associated with islet amyloid deposits. Diabetes 64 29282938. (https://doi.org/10.2337/db14-1752)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Takeda Y, Fujita Y, Honjo J, Yanagimachi T, Sakagami H, Takiyama Y, Makino Y, Abiko A, Kieffer TJ & Haneda M 2012 Reduction of both beta cell death and alpha cell proliferation by dipeptidyl peptidase-4 inhibition in a streptozotocin-induced model of diabetes in mice. Diabetologia 55 404412. (https://doi.org/10.1007/s00125-011-2365-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Talchai C, Xuan S, Lin HV, Sussel L & Accili D 2012 Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell 150 12231234. (https://doi.org/10.1016/j.cell.2012.07.029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taylor BL, Benthuysen J & Sander M 2015 Postnatal β-cell proliferation and mass expansion is dependent on the transcription factor Nkx6.1. Diabetes 64 897903. (https://doi.org/10.2337/db14-0684)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thorel F, Népote V, Avril I, Kohno K, Desgraz R, Chera S & Herrera PL 2010 Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature 464 11491154. (https://doi.org/10.1038/nature08894)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thorens B, Tarussio D, Maestro MA, Rovira M, Heikkilä E & Ferrer J 2015 Ins1(Cre) knock-in mice for beta cell-specific gene recombination. Diabetologia 58 558565. (https://doi.org/10.1007/s00125-014-3468-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Trumper A, Trumper K & Horsch D 2002 Mechanisms of mitogenic and anti-apoptotic signaling by glucose-dependent insulinotropic polypeptide in beta (INS-1)-cells. Journal of Endocrinology 174 233246. (https://doi.org/10.1677/joe.0.1740233)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • van der Meulen T & Huising MO 2015 Role of transcription factors in the transdifferentiation of pancreatic islet cells. Journal of Molecular Endocrinology 54 R103R117. (https://doi.org/10.1530/JME-14-0290)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Van Raalte DH, Van Genugten RE, Linssen MM, Ouwens DM & Diamant M 2011 Glucagon-like peptide-1 receptor agonist treatment prevents glucocorticoid-induced glucose intolerance and islet-cell dysfunction in humans. Diabetes Care 34 412417. (https://doi.org/10.2337/dc10-1677)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vasu S, Moffett RC, McClenaghan NH & Flatt PR 2015 Responses of GLP1-secreting L-cells to cytotoxicity resemble pancreatic β-cells but not α-cells. Journal of Molecular Endocrinology 54 91104. (https://doi.org/10.1530/JME-14-0214)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang Z, York NW, Nichols CG & Remedi MS 2014 Pancreatic β cell dedifferentiation in diabetes and redifferentiation following insulin therapy. Cell Metabolism 19 872882. (https://doi.org/10.1016/j.cmet.2014.03.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wei R & Hong T 2019 Glucagon-like peptide-1 promotes alpha-to-beta cell transdifferentiation: how far is it from clinical application? Diabetes and Metabolism 45 601602 3001830017. (https://doi.org/10.1016/j.diabet.2019.01.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weinberg N, Ouziel-Yahalom L, Knoller S, Efrat S & Dor Y 2007 Lineage tracing evidence for in vitro dedifferentiation but rare proliferation of mouse pancreatic beta-cells. Diabetes 56 12991304. (https://doi.org/10.2337/db06-1654)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weir GC & Bonner-Weir S 2004 Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes 53 (Suppl 3) S16S21. (https://doi.org/10.2337/diabetes.53.suppl_3.s16)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weir GC, Aguayo-Mazzucato C & Bonner-Weir S 2013 β-Cell dedifferentiation in diabetes is important, but what is it? Islets 5 233237. (https://doi.org/10.4161/isl.27494)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang YP, Thorel F, Boyer DF, Herrera PL & Wright CV 2011 Context-specific alpha- to-beta-cell reprogramming by forced Pdx1 expression. Genes and Development 25 16801685. (https://doi.org/10.1101/gad.16875711)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang Z, Hu Y, Xu N, Zhou W, Yang L, Chen R, Yang R, Sun J & Chen H 2019 A new way for beta cell neogenesis: transdifferentiation from alpha cells induced by glucagon-like peptide 1. Journal of Diabetes Research 2019 2583047. (https://doi.org/10.1155/2019/2583047)

    • PubMed
    • Search Google Scholar
    • Export Citation