Dapagliflozin attenuates renal gluconeogenic enzyme expression in obese rats

in Journal of Endocrinology

Correspondence should be addressed to A Lungkaphin: onanusorn@yahoo.com
Restricted access

The kidneys release glucose into the systemic circulation through glucose reabsorption and renal gluconeogenesis. Currently, the significance of renal glucose release in pathological conditions has become a subject of interest. We examined the effect of sodium-dependent glucose cotransporter 2 inhibitor (SGLT2i) on renal gluconeogenic enzyme expression in obese rats. Male Wistar rats (180–200 g) were fed either a normal diet (ND, n = 6) or a high-fat diet. At 16 weeks, after confirming the degree of glucose intolerance, high-fat diet-fed rats were randomly subdivided into three groups (n = 6/group): untreated group (HF), treated with dapagliflozin 1 mg/kg/day (HFSG) and treated with metformin 30 mg/kg/day (HFM). The treatment was continued for 4 weeks. We observed that dapagliflozin or metformin mitigated the enhanced expression of renal gluconeogenic enzymes, PEPCK, G6Pase and FBPase, as well as improved glucose tolerance and renal function in obese rats. Dapagliflozin downregulated the elevated expression of gluconeogenic transcription factors p-GSK3β, p-CREB and coactivator PGC1α in the renal cortical tissue. Metformin reduced the expression levels of renal cortical FOXO1 and CREB. Furthermore, reduced renal insulin signaling was improved and renal oxidative stress was attenuated by either dapagliflozin or metformin treatment in obese rats. We concluded that glucose tolerance was improved by dapagliflozin in obese prediabetic rats by suppressing renal glucose release from not only glucose reabsorption but also renal gluconeogenesis through improving renal cortical insulin signaling and oxidative stress. The efficacy of dapagliflozin in improving renal insulin signaling, oxidative stress and renal function was greater than that of metformin.

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 301 301 301
Full Text Views 21 21 21
PDF Downloads 7 7 7
  • Al-QuraishySDkhilMAAbdel MoneimAE 2015 Anti-hyperglycemic activity of selenium nanoparticles in streptozotocin-induced diabetic rats. International Journal of Nanomedicine 10 67416756. (https://doi.org/10.2147/IJN.S91377)

    • Search Google Scholar
    • Export Citation
  • AsadaSDaitokuHMatsuzakiHSaitoTSudoTMukaiHIwashitaSKakoKKishiTKasuyaYet al. 2007 Mitogen-activated protein kinases, Erk and p38, phosphorylate and regulate FoxO1. Cellular Signalling 19 519527. (https://doi.org/10.1016/j.cellsig.2006.08.015)

    • Search Google Scholar
    • Export Citation
  • DeFronzoRADavidsonJADel PratoS 2012 The role of the kidneys in glucose homeostasis: a new path towards normalizing glycaemia. Diabetes Obesity and Metabolism 14 514. (https://doi.org/10.1111/j.1463-1326.2011.01511.x)

    • Search Google Scholar
    • Export Citation
  • DrazninB 2006 Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin. Diabetes 55 23922397. (https://doi.org/10.2337/db06-0391)

    • Search Google Scholar
    • Export Citation
  • EidABodinSFerrierBDelageHBoghossianMMartinMBaverelGConjardA 2006 Intrinsic gluconeogenesis is enhanced in renal proximal tubules of Zucker diabetic fatty rats. Journal of the American Society of Nephrology 17 398405. (https://doi.org/10.1681/ASN.2005070742)

    • Search Google Scholar
    • Export Citation
  • EidAALeeDYRomanLJKhazimKGorinY 2013 Sestrin 2 and AMPK connect hyperglycemia to Nox4-dependent endothelial nitric oxide synthase uncoupling and matrix protein expression. Molecular and Cellular Biology 33 34393460. (https://doi.org/10.1128/MCB.00217-13)

    • Search Google Scholar
    • Export Citation
  • GalloLAWardMSFotheringhamAKZhuangABorgDJFlemmingNBHarvieBMKinneallyTLYehSMMcCarthyDAet al. 2016 Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice. Scientific Reports 6 26428. (https://doi.org/10.1038/srep26428)

    • Search Google Scholar
    • Export Citation
  • GaticaRBertinatRSilvaPCarpioDRamirezMJSlebeJCSan MartinRNualartFCampistolJMCaellesCet al. 2013 Altered expression and localization of insulin receptor in proximal tubule cells from human and rat diabetic kidney. Journal of Cellular Biochemistry 114 639649. (https://doi.org/10.1002/jcb.24406)

    • Search Google Scholar
    • Export Citation
  • GerichJE 2010 Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabetic Medicine 27 136142. (https://doi.org/10.1111/j.1464-5491.2009.02894.x)

    • Search Google Scholar
    • Export Citation
  • GerichJEMeyerCWoerleHJStumvollM 2001 Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care 24 382391. (https://doi.org/10.2337/diacare.24.2.382)

    • Search Google Scholar
    • Export Citation
  • JaikumkaoKPongchaidechaAChueakulaNThongnakLOWanchaiKChatsudthipongVChattipakornNLungkaphinA 2018 Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats. Diabetes Obesity and Metabolism 20 26172626. (https://doi.org/10.1111/dom.13441)

    • Search Google Scholar
    • Export Citation
  • JeonSM 2016 Regulation and function of AMPK in physiology and diseases. Experimental and Molecular Medicine 48 e245. (https://doi.org/10.1038/emm.2016.81)

    • Search Google Scholar
    • Export Citation
  • JiaYHeJWangLSuLLeiLHuangWGengXZhangSMengXZhouHet al. 2018 Dapagliflozin aggravates renal injury via promoting gluconeogenesis in db/db mice. Cellular Physiology and Biochemistry 45 17471758. (https://doi.org/10.1159/000487783)

    • Search Google Scholar
    • Export Citation
  • KacerovskyMJonesJSchmidAIBarosaCLettnerAKacerovsky-BieleszGSzendroediJChmelikMNowotnyPChandramouliVet al. 2011 Postprandial and fasting hepatic glucose fluxes in long-standing type 1 diabetes. Diabetes 60 17521758. (https://doi.org/10.2337/db10-1001)

    • Search Google Scholar
    • Export Citation
  • KhaodhiarLCummingsSApovianCM 2009 Treating diabetes and prediabetes by focusing on obesity management. Current Diabetes Reports 9 348354. (https://doi.org/10.1007/s11892-009-0055-0)

    • Search Google Scholar
    • Export Citation
  • MatherAPollockC 2011 Glucose handling by the kidney. Kidney International 79 (Supplement 120) S1S6. (https://doi.org/10.1038/ki.2010.509)

    • Search Google Scholar
    • Export Citation
  • MeyerCStumvollMNadkarniVDostouJMitrakouAGerichJ 1998 Abnormal renal and hepatic glucose metabolism in type 2 diabetes mellitus. Journal of Clinical Investigation 102 619624. (https://doi.org/10.1172/JCI2415)

    • Search Google Scholar
    • Export Citation
  • MeyerCDostouJMWelleSLGerichJE 2002 Role of human liver, kidney, and skeletal muscle in postprandial glucose homeostasis. American Journal of Physiology: Endocrinology and Metabolism 282 E419E427. (https://doi.org/10.1152/ajpendo.00032.2001)

    • Search Google Scholar
    • Export Citation
  • MeyerCWoerleHJDostouJMWelleSLGerichJE 2004 Abnormal renal, hepatic, and muscle glucose metabolism following glucose ingestion in type 2 diabetes. American Journal of Physiology: Endocrinology and Metabolism 287 E1049E1056. (https://doi.org/10.1152/ajpendo.00041.2004)

    • Search Google Scholar
    • Export Citation
  • MithieuxGVidalHZitounCBruniNDanieleNMinassianC 1996 Glucose-6-phosphatase mRNA and activity are increased to the same extent in kidney and liver of diabetic rats. Diabetes 45 891896. (https://doi.org/10.2337/diab.45.7.891)

    • Search Google Scholar
    • Export Citation
  • MitrakouA 2011 Kidney: its impact on glucose homeostasis and hormonal regulation. Diabetes Research and Clinical Practice 93 (Supplement 1) S66S72. (https://doi.org/10.1016/S0168-8227(11)70016-X)

    • Search Google Scholar
    • Export Citation
  • NoemanSAHamoodaHEBaalashAA 2011 Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats. Diabetology and Metabolic Syndrome 3 17. (https://doi.org/10.1186/1758-5996-3-17)

    • Search Google Scholar
    • Export Citation
  • OhKJHanHSKimMJKooSH 2013 CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis. BMB Reports 46 567574. (https://doi.org/10.5483/bmbrep.2013.46.12.248)

    • Search Google Scholar
    • Export Citation
  • PatelSDobleBWMacAulayKSinclairEMDruckerDJWoodgettJR 2008 Tissue-specific role of glycogen synthase kinase 3beta in glucose homeostasis and insulin action. Molecular and Cellular Biology 28 63146328. (https://doi.org/10.1128/MCB.00763-08)

    • Search Google Scholar
    • Export Citation
  • PuigserverPRheeJDonovanJWalkeyCJYoonJCOrienteFKitamuraYAltomonteJDongHAcciliDet al. 2003 Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 423 550555. (https://doi.org/10.1038/nature01667)

    • Search Google Scholar
    • Export Citation
  • QuinnPGYeagleyD 2005 Insulin regulation of PEPCK gene expression: a model for rapid and reversible modulation. Current Drug Targets: Immune Endocrine and Metabolic Disorders 5 423437. (https://doi.org/10.2174/156800805774912962)

    • Search Google Scholar
    • Export Citation
  • RatliffBBAbdulmahdiWPawarRWolinMS 2016 Oxidant mechanisms in renal injury and disease. Antioxidants and Redox Signaling 25 119146. (https://doi.org/10.1089/ars.2016.6665)

    • Search Google Scholar
    • Export Citation
  • RizzaRA 2010 Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: implications for therapy. Diabetes 59 26972707. (https://doi.org/10.2337/db10-1032)

    • Search Google Scholar
    • Export Citation
  • RozaNAPossignoloLFPalanchACGontijoJA 2016 Effect of long-term high-fat diet intake on peripheral insulin sensibility, blood pressure, and renal function in female rats. Food and Nutrition Research 60 28536. (https://doi.org/10.3402/fnr.v60.28536)

    • Search Google Scholar
    • Export Citation
  • SakamakiJDaitokuHKanekoYHagiwaraAUenoKFukamizuA 2012 GSK3beta regulates gluconeogenic gene expression through HNF4alpha and FOXO1. Journal of Receptor and Signal Transduction Research 32 96101. (https://doi.org/10.3109/10799893.2012.660531)

    • Search Google Scholar
    • Export Citation
  • SasakiMSasakoTKubotaNSakuraiYTakamotoIKubotaTInagiRSekiGGotoMUekiKet al. 2017 Dual regulation of gluconeogenesis by insulin and glucose in the proximal tubules of the kidney. Diabetes 66 23392350. (https://doi.org/10.2337/db16-1602)

    • Search Google Scholar
    • Export Citation
  • SchulkensIAHeusschenRvan den BoogaartVvan SuylenRJDingemansAMGriffioenAWThijssenVL 2014 Galectin expression profiling identifies galectin-1 and Galectin-9Delta5 as prognostic factors in stage I/II non-small cell lung cancer. PLoS ONE 9 e107988. (https://doi.org/10.1371/journal.pone.0107988)

    • Search Google Scholar
    • Export Citation
  • ShinSJChungSKimSJLeeEMYooYHKimJWAhnYBKimESMoonSDKimMJet al. 2016 Effect of sodium-glucose co-transporter 2 inhibitor, dapagliflozin, on renal renin-angiotensin system in an animal model of Type 2 diabetes. PLoS ONE 11 e0165703. (https://doi.org/10.1371/journal.pone.0165703)

    • Search Google Scholar
    • Export Citation
  • SolinasGBecattiniB 2017 JNK at the crossroad of obesity, insulin resistance, and cell stress response. Molecular Metabolism 6 174184. (https://doi.org/10.1016/j.molmet.2016.12.001)

    • Search Google Scholar
    • Export Citation
  • SongSAndrikopoulosSFilippisCThorburnAWKhanDProiettoJ 2001 Mechanism of fat-induced hepatic gluconeogenesis: effect of metformin. American Journal of Physiology: Endocrinology and Metabolism 281 E275E282. (https://doi.org/10.1152/ajpendo.2001.281.2.E275)

    • Search Google Scholar
    • Export Citation
  • SweMTPongchaidechaAChatsudthipongVChattipakornNLungkaphinA 2019a Molecular signaling mechanisms of renal gluconeogenesis in nondiabetic and diabetic conditions. Journal of Cellular Physiology 234 81348151. (https://doi.org/10.1002/jcp.27598)

    • Search Google Scholar
    • Export Citation
  • SweMTThongnakLJaikumkaoKPongchaidechaAChatsudthipongVLungkaphinA 2019b Dapagliflozin not only improves hepatic injury and pancreatic endoplasmic reticulum stress, but also induces hepatic gluconeogenic enzymes expression in obese rats. Clinical Science 133 24152430. (https://doi.org/10.1042/CS20190863)

    • Search Google Scholar
    • Export Citation
  • TeramiNOgawaDTachibanaHHatanakaTWadaJNakatsukaAEguchiJHoriguchiCSNishiiNYamadaHet al. 2014 Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS ONE 9 e100777. (https://doi.org/10.1371/journal.pone.0100777)

    • Search Google Scholar
    • Export Citation
  • ThorntonTMPedraza-AlvaGDengBWoodCDAronshtamAClementsJLSabioGDavisRJMatthewsDEDobleBet al. 2008 Phosphorylation by p38 MAPK as an alternative pathway for GSK3beta inactivation. Science 320 667670. (https://doi.org/10.1126/science.1156037)

    • Search Google Scholar
    • Export Citation
  • TojoAHatakeyamaSKinugasaSNangakuM 2015 Angiotensin receptor blocker telmisartan suppresses renal gluconeogenesis during starvation. Diabetes Metabolic Syndrome and Obesity: Targets and Therapy 8 103113. (https://doi.org/10.2147/DMSO.S78771)

    • Search Google Scholar
    • Export Citation
  • VallonVKomersR 2011 Pathophysiology of the diabetic kidney. Comprehensive Physiology 1 11751232. (https://doi.org/10.1002/cphy.c100049)

    • Search Google Scholar
    • Export Citation
  • VallonVGerasimovaMRoseMAMasudaTSatrianoJMayouxEKoepsellHThomsonSCRiegT 2014 SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. American Journal of Physiology: Renal Physiology 306 F194F204. (https://doi.org/10.1152/ajprenal.00520.2013)

    • Search Google Scholar
    • Export Citation
  • WanchaiKYasomSTunapongWChunchaiTThiennimitrPChaiyasutCPongchaidechaAChatsudthipongVChattipakornSChattipakornNet al. 2018a Prebiotic prevents impaired kidney and renal Oat3 functions in obese rats. Journal of Endocrinology 237 2942. (https://doi.org/10.1530/JOE-17-0471)

    • Search Google Scholar
    • Export Citation
  • WanchaiKYasomSTunapongWChunchaiTEaimworawuthikulSThiennimitrPChaiyasutCPongchaidechaAChatsudthipongVChattipakornSet al. 2018b Probiotic Lactobacillus paracasei HII01 protects rats against obese-insulin resistance-induced kidney injury and impaired renal organic anion transporter 3 function. Clinical Science 132 15451563. (https://doi.org/10.1042/CS20180148)

    • Search Google Scholar
    • Export Citation
  • WenYLinNYanHTLuoHChenGYCuiJFShiLChenTWangTTangLJ 2015 Down-regulation of renal gluconeogenesis in Type II diabetic rats following Roux-en-Y gastric bypass surgery: a potential mechanism in hypoglycemic effect. Obesity Facts 8 110124. (https://doi.org/10.1159/000381163)

    • Search Google Scholar
    • Export Citation
  • WiniarskaKJarzynaRDzikJMJagielskiAKGrabowskiMNowosielskaAFochtDSierakowskiB 2015 ERK1/2 pathway is involved in renal gluconeogenesis inhibition under conditions of lowered NADPH oxidase activity. Free Radical Biology and Medicine 81 1321. (https://doi.org/10.1016/j.freeradbiomed.2014.12.024)

    • Search Google Scholar
    • Export Citation
  • WuXWilliamsKJ 2012 NOX4 pathway as a source of selective insulin resistance and responsiveness. Arteriosclerosis Thrombosis and Vascular Biology 32 12361245. (https://doi.org/10.1161/ATVBAHA.111.244525)

    • Search Google Scholar
    • Export Citation
  • YoonJCPuigserverPChenGDonovanJWuZRheeJAdelmantGStaffordJKahnCRGrannerDKet al. 2001 Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413 131138. (https://doi.org/10.1038/35093050)

    • Search Google Scholar
    • Export Citation
  • YoshiharaFImazuMHamasakiTAnzaiTYasudaSItoSYamamotoHHashimuraKYasumuraYMoriKet al. 2018 An exploratory study of dapagliflozin for the attenuation of albuminuria in patients with heart failure and type 2 diabetes mellitus (DAPPER). Cardiovascular Drugs and Therapy 32 183190. (https://doi.org/10.1007/s10557-018-6782-1)

    • Search Google Scholar
    • Export Citation