Pivotal role of NF-κB in cellular senescence of experimental pituitary tumours

in Journal of Endocrinology
Authors:
Bethania Mongi-Bragato Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina

Search for other papers by Bethania Mongi-Bragato in
Current site
Google Scholar
PubMed
Close
,
Ezequiel Grondona Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina

Search for other papers by Ezequiel Grondona in
Current site
Google Scholar
PubMed
Close
,
Liliana del Valle Sosa Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina

Search for other papers by Liliana del Valle Sosa in
Current site
Google Scholar
PubMed
Close
,
Natacha Zlocowski Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina

Search for other papers by Natacha Zlocowski in
Current site
Google Scholar
PubMed
Close
,
Ana Clara Venier Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina

Search for other papers by Ana Clara Venier in
Current site
Google Scholar
PubMed
Close
,
Alicia Inés Torres Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina

Search for other papers by Alicia Inés Torres in
Current site
Google Scholar
PubMed
Close
,
Alexandra Latini Laboratório de Bioenergética e Estresse Oxidativo – LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Campus Universitário, Córrego Grande, Florianópolis, Brasil

Search for other papers by Alexandra Latini in
Current site
Google Scholar
PubMed
Close
,
Rodrigo Bainy Leal Departamento de Bioquímica e Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil

Search for other papers by Rodrigo Bainy Leal in
Current site
Google Scholar
PubMed
Close
,
Silvina Gutiérrez Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina

Search for other papers by Silvina Gutiérrez in
Current site
Google Scholar
PubMed
Close
, and
Ana Lucía De Paul Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina

Search for other papers by Ana Lucía De Paul in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to A L De Paul: adepaul@cmefcm.uncor.edu
Restricted access
Rent on DeepDyve

Sign up for journal news

The molecular mechanisms underlying the capability of pituitary tumours to avoid unregulated cell proliferation are still not well understood. However, the NF-κB transcription factor, which is able to modulate not only cellular senescence but also tumour progression, has emerged as a targeted candidate. This work was focused on the NF-κB role in cellular senescence during the progression of experimental pituitary tumours. Also, the contribution of the signalling pathways in senescence-associated NF-κB activation and the senescence-associated secretory phenotype (SASP) and pro-survival-NF-κB target genes transcription were analysed. A robust NF-κB activation was seen at E20–E40 of tumour development accompanied by a marked SA-β-Gal co-reactivity in the tumour pituitary parenchyma. The induction of TNFα and IL1-β as specific SASP-related NF-κB target genes as well as Bcl-2 and Bcl-xl pro-survival genes was shown to be accompanied by increases in the p-p38 MAPK protein levels, starting at the E20 stage and strengthening from 40 to 60 days of tumour growth. It is noteworthy that p-JNK displayed a similar pattern of activation during pituitary tumour development, while p-AKT and p-ERK1/2 were downregulated. By employing a pharmacological strategy to abrogate NF-κB activity, we demonstrated a marked reduction in SA-β-Gal activity and a slight decrease in Ki67 immunopositive cells after NF-κB blockade. These results suggest a central role for NF-κB in the regulation of the cellular senescence programme, leading to the strikingly benign intrinsic nature of pituitary adenomas.

 

  • Collapse
  • Expand
  • Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, Fumagalli M, Da Costa M, Brown C, Popov N, et al. 2008 Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133 10061018. (https://doi.org/10.1016/j.cell.2008.03.038)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Alexandraki KI, Munayem Khan M, Chahal HS, Dalantaeva NS, Trivellin G, Berney DM, Caron P, Popovic V, Pfeifer M, Jordan S, et al. 2012 Oncogene-induced senescence in pituitary adenomas and carcinomas. Hormones 11 297307. (https://doi.org/10.14310/horm.2002.1358)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Asa SL & Ezzat S 2009 The pathogenesis of pituitary tumors. Annual Review of Pathology 4 97126. (https://doi.org/10.1146/annurev.pathol.4.110807.092259)

  • Bubici C, Papa S, Pham CG, Zazzeroni F & Franzoso G 2004 NF-kappaB and JNK: an intricate affair. Cell Cycle 3 15241529. (https://doi.org/10.4161/cc.3.12.1321)

  • Campisi J & Robert L 2014 Cell senescence: role in aging and age-related diseases. Interdisciplinary Topics in Gerontology 39 4561. (https://doi.org/10.1159/000358899)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carreno G, Gonzalez-Meljem JM, Haston S & Martinez-Barbera JP 2017 Stem cells and their role in pituitary tumorigenesis. Molecular and Cellular Endocrinology 445 2734. (https://doi.org/10.1016/j.mce.2016.10.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen Z, Li Z, Chang Y, Ma L, Xu W, Li M, Li J, Zhang W, Sun Q, An X, et al. 2015 Relationship between NF-kappaB, MMP-9, and MICA expression in pituitary adenomas reveals a new mechanism of pituitary adenomas immune escape. Neuroscience Letters 597 7783. (https://doi.org/10.1016/j.neulet.2015.04.025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chesnokova V, Zonis S, Rubinek T, Yu R, Ben-Shlomo A, Kovacs K, Wawrowsky K & Melmed S 2007 Senescence mediates pituitary hypoplasia and restrains pituitary tumor growth. Cancer Research 67 1056410572. (https://doi.org/10.1158/0008-5472.CAN-07-0974)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chesnokova V, Zonis S, Kovacs K, Ben-Shlomo A, Wawrowsky K, Bannykh S & Melmed S 2008 p21(Cip1) restrains pituitary tumor growth. PNAS 105 1749817503. (https://doi.org/10.1073/pnas.0804810105)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chesnokova V, Zhou C, Anat BS, Svetlana Z, Yuji T, Song-Guang R & Melmed S 2013 Growth hormone is a cellular senescence target in pituitary and nonpituitary cells. PNAS 110 33313339. (https://doi.org/10.1073/pnas.1310589110)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, Premsrirut P, Luo W, Chicas A, Lee CS, et al. 2011 Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity. Genes and Development 25 21252136. (https://doi.org/10.1101/gad.17276711)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, Nelson PS, Desprez PY & Campisi J 2008 Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biology 6 28532868. (https://doi.org/10.1371/journal.pbio.0060301)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Coppe JP, Desprez PY, Krtolica A & Campisi J 2010 The senescence-associated secretory phenotype: the dark side of tumor suppression. Annual Review of Pathology 5 99118. (https://doi.org/10.1146/annurev-pathol-121808-102144)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT, Johannessen CM, Hollstein PE, MacCollin M & Cichowski K 2006 A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10 459472. (https://doi.org/10.1016/j.ccr.2006.10.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cuzzocrea S, Chatterjee PK, Mazzon E, Dugo L, Serraino I, Britti D, Mazzullo G, Caputi AP & Thiemermann C 2002 Pyrrolidinedithiocarbamate attenuates the development of acute and chronic inflammation. British Journal of Pharmacology 135 496510. (https://doi.org/10.1038/sj.bjp.0704463)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Donangelo I, Gutman S, Horvath E, Kovacs K, Wawrowsky K, Mount M & Melmed S 2006 Pituitary tumor transforming gene overexpression facilitates pituitary tumor development. Endocrinology 147 47814791. (https://doi.org/10.1210/en.2006-0544)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Franceschi C & Campisi J 2014 Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. Journals of Gerontology: Series A, Biological Sciences and Medical Sciences 69 (Supplement 1) S4S9. (https://doi.org/10.1093/gerona/glu057)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Freund A, Patil CK & Campisi J 2011 P38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO Journal 30 15361548. (https://doi.org/10.1038/emboj.2011.69)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gonzalez-Meljem JM & Martinez-Barbera JP 2018 Senescence drives non-cell autonomous tumorigenesis in the pituitary gland. Molecular and Cellular Oncology 5 e1435180. (https://doi.org/10.1080/23723556.2018.1435180)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gonzalez-Meljem JM, Haston S, Carreno G, Apps JR, Pozzi S, Stache C, Kaushal G, Virasami A, Panousopoulos L, Mousavy-Gharavy SN, et al. 2017 Stem cell senescence drives age-attenuated induction of pituitary tumours in mouse models of paediatric craniopharyngioma. Nature Communications 8 1819. (https://doi.org/10.1038/s41467-017-01992-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hayes TK, Neel NF, Hu C, Gautam P, Chenard M, Long B, Aziz M, Kassner M, Bryant KL, Pierobon M, et al. 2016 Long-term ERK inhibition in KRAS-mutant pancreatic cancer is associated with MYC degradation and senescence-like growth suppression. Cancer Cell 29 7589. (https://doi.org/10.1016/j.ccell.2015.11.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hernandez-Segura A, Nehme J & Demaria M 2018 Hallmarks of cellular senescence. Trends in Cell Biology 28 436453. (https://doi.org/10.1016/j.tcb.2018.02.001)

  • Huang WC, Ju TK, Hung MC & Chen CC 2007 Phosphorylation of CBP by IKKalpha promotes cell growth by switching the binding preference of CBP from p53 to NF-kappaB. Molecular Cell 26 7587. (https://doi.org/10.1016/j.molcel.2007.02.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Karin M 2006 Nuclear factor-kappaB in cancer development and progression. Nature 441 431436. (https://doi.org/10.1038/nature04870)

  • Kim YY, Jee HJ, Um JH, Kim YM, Bae SS & Yun J 2017 Cooperation between p21 and Akt is required for p53-dependent cellular senescence. Aging Cell 16 10941103. (https://doi.org/10.1111/acel.12639)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kuilman T & Peeper DS 2009 Senescence-messaging secretome: SMS-ing cellular stress. Nature Reviews: Cancer 9 8194. (https://doi.org/10.1038/nrc2560)

  • Kuilman T, Michaloglou C, Mooi WJ & Peeper DS 2010 The essence of senescence. Genes and Development 24 24632479. (https://doi.org/10.1101/gad.1971610)

  • Kwong J, Hong L, Liao R, Deng Q, Han J & Sun P 2009 p38alpha and p38gamma mediate oncogenic ras-induced senescence through differential mechanisms. Journal of Biological Chemistry 284 1123711246. (https://doi.org/10.1074/jbc.M808327200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, Kleijer WJ, DiMaio D & Hwang ES 2006 Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5 187195. (https://doi.org/10.1111/j.1474-9726.2006.00199.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu SF, Ye X & Malik AB 1999 Inhibition of NF-kappaB activation by pyrrolidinedithiocarbamate prevents in vivo expression of proinflammatory genes. Circulation 100 13301337. (https://doi.org/10.1161/01.cir.100.12.1330)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu K, Feng T, Liu J, Zhong M & Zhang S 2012 Silencing of the DEK gene induces apoptosis and senescence in CaSki cervical carcinoma cells via the up-regulation of NF-kappaB p65. Bioscience Reports 32 323332. (https://doi.org/10.1042/BSR20100141)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lloyd RV, Scheithauer BW, Kuroki T, Vidal S, Kovacs K & Stefaneanu L 1999 Vascular endothelial growth factor (VEGF) expression in human pituitary adenomas and carcinomas. Endocrine Pathology 10 229235. (https://doi.org/10.1007/bf02738884)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lopez-Otin C, Blasco MA, Partridge L, Serrano M & Kroemer G 2013 The hallmarks of aging. Cell 153 11941217. (https://doi.org/10.1016/j.cell.2013.05.039)

  • Maiza JC & Caron P 2009 Pituitary carcinomas and aggressive adenomas: an overview and new therapeutic options. Annales d’Endocrinologie 70 (Supplement 1) S12S19. (https://doi.org/10.1016/S0003-4266(09)72471-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Melmed S 2011 Pathogenesis of pituitary tumors. Nature Reviews: Endocrinology 7 257266. (https://doi.org/10.1038/nrendo.2011.40)

  • Melmed S 2015 Pituitary tumors. Endocrinology and Metabolism Clinics of North America 44 19. (https://doi.org/10.1016/j.ecl.2014.11.004)

  • Mertens F, Gremeaux L, Chen J, Fu Q, Willems C, Roose H, Govaere O, Roskams T, Cristina C, Becú-Villalobos D, et al. 2015 Pituitary tumors contain a side population with tumor stem cell-associated characteristics. Endocrine-Related Cancer 22 481504. (https://doi.org/10.1530/ERC-14-0546)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miao C, Lv Y, Zhang W, Chai X, Feng L, Fang Y, Liu X & Zhang X 2017 Pyrrolidinedithiocarbamate (PDTC) attenuates cancer cachexia by affecting muscle atrophy and fat lipolysis. Frontiers in Pharmacology 8 915. (https://doi.org/10.3389/fphar.2017.00915)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moiseeva O, Deschenes-Simard X, St-Germain E, Igelmann S, Huot G, Cadar AE, Bourdeau V, Pollak MN & Ferbeyre G 2013 Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-kappaB activation. Aging Cell 12 489498. (https://doi.org/10.1111/acel.12075)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mongi-Bragato B, Zamponi E, Garcia-Keller C, Assis MA, Virgolini MB, Masco DH, Zimmer A & Cancela LM 2016 Enkephalin is essential for the molecular and behavioral expression of cocaine sensitization. Addiction Biology 21 326338. (https://doi.org/10.1111/adb.12200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moss BL, Elhammali A, Fowlkes T, Gross S, Vinjamoori A, Contag CH & Piwnica-Worms D 2012 Interrogation of inhibitor of nuclear factor kappaB alpha/nuclear factor kappaB (IkappaBalpha/NF-kappaB) negative feedback loop dynamics: from single cells to live animals in vivo. Journal of Biological Chemistry 287 3135931370. (https://doi.org/10.1074/jbc.m112.364018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nogueira L, Ruiz-Ontanon P, Vazquez-Barquero A, Lafarga M, Berciano MT, Aldaz B, Grande L, Casafont I, Segura V, Robles EF, et al. 2011 Blockade of the NFkappaB pathway drives differentiating glioblastoma-initiating cells into senescence both in vitro and in vivo. Oncogene 30 35373548. (https://doi.org/10.1038/onc.2011.74)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ortiz LD, Syro LV, Scheithauer BW, Ersen A, Uribe H, Fadul CE, Rotondo F, Horvath E & Kovacs K 2012 Anti-VEGF therapy in pituitary carcinoma. Pituitary 15 445449. (https://doi.org/10.1007/s11102-011-0346-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM & Donner DB 1999 NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401 8285. (https://doi.org/10.1038/43466)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E & Ben-Neriah Y 2004 NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431 461466. (https://doi.org/10.1038/nature02924)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Place RF, Haspeslagh D, Hubbard AK & Giardina C 2001 Cytokine-induced stabilization of newly synthesized I(kappa)B-alpha. Biochemical and Biophysical Research Communications 283 813820. (https://doi.org/10.1006/bbrc.2001.4883)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Place RF, Haspeslagh D & Giardina C 2003 Induced stabilization of IkappaBalpha can facilitate its re-synthesis and prevent sequential degradation. Journal of Cellular Physiology 195 470478. (https://doi.org/10.1002/jcp.10262)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rovillain E, Mansfield L, Caetano C, Alvarez-Fernandez M, Caballero OL, Medema RH, Hummerich H & Jat PS 2011 Activation of nuclear factor-kappa B signalling promotes cellular senescence. Oncogene 30 23562366. (https://doi.org/10.1038/onc.2010.611)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sabatino ME, Petiti JP, Sosa L del V, Perez PA, Gutierrez S, Leimgruber C, Latini A, Torres AI & De Paul AL 2015 Evidence of cellular senescence during the development of estrogen-induced pituitary tumors. Endocrine-Related Cancer 22 299317. (https://doi.org/10.1530/ERC-14-0333)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sabatino ME, Grondona E, Sosa LDV, Mongi Bragato B, Carreno L, Juarez V, da Silva RA, Remor A, de Bortoli L, de Paula Martins R, et al. 2018 Oxidative stress and mitochondrial adaptive shift during pituitary tumoral growth. Free Radical Biology and Medicine 120 4155. (https://doi.org/10.1016/j.freeradbiomed.2018.03.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Salminen A, Kaarniranta K, Haapasalo A, Hiltunen M, Soininen H & Alafuzoff I 2012 Emerging role of p62/sequestosome-1 in the pathogenesis of Alzheimer’s disease. Progress in Neurobiology 96 8795. (https://doi.org/10.1016/j.pneurobio.2011.11.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sapochnik M, Fuertes M & Arzt E 2017 Programmed cell senescence: role of IL-6 in the pituitary. Journal of Molecular Endocrinology 58 R241R253. (https://doi.org/10.1530/JME-17-0026)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Satyanarayana A, Greenberg RA, Schaetzlein S, Buer J, Masutomi K, Hahn WC, Zimmermann S, Martens U, Manns MP & Rudolph KL 2004 Mitogen stimulation cooperates with telomere shortening to activate DNA damage responses and senescence signaling. Molecular and Cellular Biology 24 54595474. (https://doi.org/10.1128/MCB.24.12.5459-5474.2004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Scheithauer BW, Gaffey TA, Lloyd RV, Sebo TJ, Kovacs KT, Horvath E, Yapicier O, Young WF Jr, Meyer FB, Kuroki T, et al. 2006 Pathobiology of pituitary adenomas and carcinomas. Neurosurgery 59 341353; discussion 341353. (https://doi.org/10.1227/01.NEU.0000223437.51435.6E)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schramek D, Kotsinas A, Meixner A, Wada T, Elling U, Pospisilik JA, Neely GG, Zwick RH, Sigl V, Forni G, et al. 2011 The stress kinase MKK7 couples oncogenic stress to p53 stability and tumor suppression. Nature Genetics 43 212219. (https://doi.org/10.1038/ng.767)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tammela T, Sanchez-Rivera FJ, Cetinbas NM, Wu K, Joshi NS, Helenius K, Park Y, Azimi R, Kerper NR, Wesselhoeft RA, et al. 2017 A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature 545 355359. (https://doi.org/10.1038/nature22334)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tilstra JS, Robinson AR, Wang J, Gregg SQ, Clauson CL, Reay DP, Nasto LA, St Croix CM, Usas A, Vo N, et al. 2012 NF-kappaB inhibition delays DNA damage-induced senescence and aging in mice. Journal of Clinical Investigation 122 26012612. (https://doi.org/10.1172/JCI45785)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Turner HE, Nagy Z, Esiri MM, Harris AL & Wass JA 2000 Role of matrix metalloproteinase 9 in pituitary tumor behavior. Journal of Clinical Endocrinology and Metabolism 85 29312935. (https://doi.org/10.1210/jcem.85.8.6754)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tyagi N, Bhardwaj A, Singh AP, McClellan S, Carter JE & Singh S 2014 p21 activated kinase 4 promotes proliferation and survival of pancreatic cancer cells through AKT- and ERK-dependent activation of NF-kappaB pathway. Oncotarget 5 87788789. (https://doi.org/10.18632/oncotarget.2398)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vender JR, Laird MD & Dhandapani KM 2008 Inhibition of NFkappaB reduces cellular viability in GH3 pituitary adenoma cells. Neurosurgery 62 11221127; discussion 10271128. (https://doi.org/10.1227/01.neu.0000325874.82999.75)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang W, Chen JX, Liao R, Deng Q, Zhou JJ, Huang S & Sun P 2002 Sequential activation of the MEK-extracellular signal-regulated kinase and MKK3/6-p38 mitogen-activated protein kinase pathways mediates oncogenic ras-induced premature senescence. Molecular and Cellular Biology 22 33893403. (https://doi.org/10.1128/mcb.22.10.3389-3403.2002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Werner SL, Barken D & Hoffmann A 2005 Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 309 18571861. (https://doi.org/10.1126/science.1113319)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Werner SL, Kearns JD, Zadorozhnaya V, Lynch C, O’Dea E, Boldin MP, Ma A, Baltimore D & Hoffmann A 2008 Encoding NF-kappaB temporal control in response to TNF: distinct roles for the negative regulators IkappaBalpha and A20. Genes and Development 22 20932101. (https://doi.org/10.1101/gad.1680708)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xia Y, Padre R, Hurtado De Mendoza T, Bottero V, Tergaonkar V & Verma I 2009 Phosphorylation of p53 by IκB kinase 2 promotes its degradation by β-TrCP PNAS 106 26292634. (https://doi.org/10.1073/pnas.0812256106)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xia Y, Shen S & Verma IM 2014 NF-kappaB, an active player in human cancers. Cancer Immunology Research 2 823830. (https://doi.org/10.1158/2326-6066.CIR-14-0112)

  • Xu W, Li Y, Yuan WW, Yin Y, Song WW, Wang Y, Huang QQ, Zhao WH & Wu JQ 2018 Membrane-bound CD40L promotes senescence and initiates senescence-associated secretory phenotype via NF-kappaB activation in lung adenocarcinoma. Cellular Physiology and Biochemistry 48 17931803. (https://doi.org/10.1159/000492352)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang H, Sun R, Ma N, Liu Q, Sun X, Zi P, Wang J, Chao K & Yu L 2017 Inhibition of nuclear factor-kappaB signal by pyrrolidinedithiocarbamate alleviates lipopolysaccharide-induced acute lung injury. Oncotarget 8 4729647304. (https://doi.org/10.18632/oncotarget.17624)

    • PubMed
    • Search Google Scholar
    • Export Citation