Ψ-Xenin-6 enhances sitagliptin effectiveness, but does not improve glucose tolerance

in Journal of Endocrinology

Correspondence should be addressed to N Irwin: n.irwin@ulster.ac.uk
Restricted access

Recent studies have characterised the biological properties and glucose-dependent insulinotropic polypeptide (GIP) potentiating actions of an enzymatically stable, C-terminal hexapeptide fragment of the gut hormone xenin, namely Ψ-xenin-6. Given the primary therapeutic target of clinically approved dipeptidyl peptidase-4 (DPP-4) inhibitor drugs is augmentation of the incretin effect, the present study has assessed the capacity of Ψ-xenin-6 to enhance the antidiabetic efficacy of sitagliptin in high fat fed (HFF) mice. Individual administration of either sitagliptin or Ψ-xenin-6 alone for 18 days resulted in numerous metabolic benefits and positive effects on pancreatic islet architecture. As expected, sitagliptin therapy was associated with elevated circulating GIP and GLP-1 levels, with concurrent Ψ-xenin-6 not elevating these hormones or enhancing DPP-4 inhibitory activity of the drug. However, combined sitagliptin and Ψ-xenin-6 therapy in HFF mice was associated with further notable benefits, beyond that observed with either treatment alone. This included body weight change similar to lean controls, more pronounced and rapid benefits on circulating glucose and insulin as well as additional improvements in attenuating gluconeogenesis. Favourable effects on pancreatic islet architecture and peripheral insulin sensitivity were more apparent with combined therapy. Expression of hepatic genes involved in gluconeogenesis and insulin action were partially, or fully, restored to normal levels by the treatment regimens, with beneficial effects more prominent in the combination treatment group. These data demonstrate that combined treatment with Ψ-xenin-6 and sitagliptin did not alter glucose tolerance but does offer some metabolic advantages, which merit further consideration as a therapeutic option for type 2 diabetes.

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 28 28 28
Full Text Views 3 3 3
PDF Downloads 5 5 5
  • AghaMAghaR 2017 The rising prevalence of obesity: part A: impact on public health. International Journal of Surgical Oncology 2 e17.

  • AhrénB 2007 Dipeptidyl peptidase-4 inhibitors: clinical data and clinical implications. Diabetes Care 30 13441350. (https://doi.org/10.2337/dc07-0233)

    • Search Google Scholar
    • Export Citation
  • Al-GoblanASAl-AlfiMAKhanMZ 2014 Mechanism linking diabetes mellitus and obesity. Diabetes Metabolic Syndrome and Obesity: Targets and Therapy 7 587591. (https://doi.org/10.2147/DMSO.S67400)

    • Search Google Scholar
    • Export Citation
  • BaggioLLDruckerDJ 2007 Biology of incretins: GLP-1 and GIP. Gastroenterology 132 21312157. (https://doi.org/10.1053/j.gastro.2007.03.054)

    • Search Google Scholar
    • Export Citation
  • BarnettAHCharbonnelBMosesRGKalraS 2015 Dipeptidyl peptidase-4 inhibitors in triple oral therapy regimens in patients with type 2 diabetes mellitus. Current Medical Research and Opinion 31 19191931. (https://doi.org/10.1185/03007995.2015.1081589)

    • Search Google Scholar
    • Export Citation
  • BennetttRG 2018 Sitagliptin. Reference Module in Biomedical Sciences. Elsevier.

  • BhatVKKerrBDFlattPRGaultVA 2013 A novel GIP-oxyntomodulin hybrid peptide acting through GIP, glucagon and GLP-1 receptors exhibits weight reducing and anti-diabetic properties. Biochemical Pharmacology 85 16551662. (https://doi.org/10.1016/j.bcp.2013.03.009)

    • Search Google Scholar
    • Export Citation
  • ChowdhurySReedsDNCrimminsDLPattersonBWLacinyEWangSTranHDGriestTARometoDADunaiJet al. 2014 Xenin-25 delays gastric emptying and reduces postprandial glucose levels in humans with and without type 2 diabetes. American Journal of Physiology: Gastrointestinal and Liver Physiology 306 G301G309. (https://doi.org/10.1152/ajpgi.00383.2013)

    • Search Google Scholar
    • Export Citation
  • CoskunTSloopKWLoghinCAlsina-FernandezJUrvaSBokvistKBCuiXBriereDACabreraORoellWCet al. 2018 LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. Molecular Metabolism 18 314. (https://doi.org/10.1016/j.molmet.2018.09.009)

    • Search Google Scholar
    • Export Citation
  • CraigSLGaultVAIrwinN 2018 Emerging therapeutic potential for xenin and related peptides in obesity and diabetes. Diabetes/Metabolism Research and Reviews 34 e3006. (https://doi.org/10.1002/dmrr.3006)

    • Search Google Scholar
    • Export Citation
  • CraigSLGaultVAMcCleanSHamscherGIrwinN 2019 Effects of an enzymatically stable C-terminal hexapseudopeptide fragment peptide of xenin-25, ψ-xenin-6, on pancreatic islet function and metabolism. Molecular and Cellular Endocrinology 496 110523. (https://doi.org/10.1016/j.mce.2019.110523)

    • Search Google Scholar
    • Export Citation
  • DeaconCF 2019 Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of Type 2 diabetes. Frontiers in Endocrinology 10 80. (https://doi.org/10.3389/fendo.2019.00080)

    • Search Google Scholar
    • Export Citation
  • DeaconCFHughesTEHolstJJ 1998 Dipeptidyl peptidase IV inhibition potentiates the insulinotropic effect of glucagon-like peptide 1 in the anesthetized pig. Diabetes 47 764769. (https://doi.org/10.2337/diabetes.47.5.764)

    • Search Google Scholar
    • Export Citation
  • DruckerDJ 2006 The biology of incretin hormones. Cell Metabolism 3 153165. (https://doi.org/10.1016/j.cmet.2006.01.004)

  • ElrishiMAKhuntiKJarvisJDaviesMJ 2007 The dipeptidyl-peptidase-4 (DPP-4) inhibitors: a new class of oral therapy for patients with type 2 diabetes mellitus. Practical Diabetes International 24 474482. (https://doi.org/10.1002/pdi.1181)

    • Search Google Scholar
    • Export Citation
  • EmanuelliBVienbergSGSmythGChengCStanfordKIArumugamMMichaelMDAdamsACKharitonenkovAKhanCR 2014 Interplay between FGF21 and insulin action in the liver regulates metabolism. Journal of Clinical Investigation 124 515527. (https://doi.org/10.1172/JCI67353)

    • Search Google Scholar
    • Export Citation
  • FeurleGEMeyerHEHamscherG 2003 Metabolism and potency of xenin and of its reduced hexapseudopeptide ψ-fragment in the dog. Life Sciences 74 697707. (https://doi.org/10.1016/j.lfs.2003.05.009)

    • Search Google Scholar
    • Export Citation
  • FlattPRBaileyCJ 1982 Plasma glucose and insulin response to glucagon and arginine in Aston ob/ob mice: evidence for a selective defect in glucose-mediated insulin release. Hormone and Metabolic Research 14 127130. (https://doi.org/10.1055/s-2007-1018945)

    • Search Google Scholar
    • Export Citation
  • FoleyJEJordanJ 2010 Weight neutrality with the DPP-4 inhibitor, vildagliptin: mechanistic basis and clinical experience. Vascular Health and Risk Management 6 541548. (https://doi.org/10.2147/vhrm.s10952)

    • Search Google Scholar
    • Export Citation
  • FriasJPNauckMAVanJKutnerMECuiXBensonCUrvaSGimenoREMilicevicZRobinsDet al. 2018 Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet 392 21802193. (https://doi.org/10.1016/S0140-6736(18)32260-8)

    • Search Google Scholar
    • Export Citation
  • GallwitzB 2013 Emerging DPP-4 inhibitors: focus on linagliptin for type 2 diabetes. Diabetes Metabolic Syndrome and Obesity: Targets and Therapy 6 19. (https://doi.org/10.2147/DMSO.S23166)

    • Search Google Scholar
    • Export Citation
  • GaoXFChenWKongXPXuAMWangZGSweeneyGWuD 2009 Enhanced susceptibility of Cpt1c knockout mice to glucose intolerance induced by a high-fat diet involves elevated hepatic gluconeogenesis and decreased skeletal muscle glucose uptake. Diabetologia 52 912920. (https://doi.org/10.1007/s00125-009-1284-0)

    • Search Google Scholar
    • Export Citation
  • GaultVAMartinCMFlattPRParthsarathyVIrwinN 2015a Xenin-25[Lys13PAL]: a novel long-acting acylated analogue of xenin-25 with promising antidiabetic potential. Acta Diabetologica 52 461471. (https://doi.org/10.1007/s00592-014-0681-0)

    • Search Google Scholar
    • Export Citation
  • GaultVALennoxRFlattPR 2015b Sitagliptin, a dipeptidyl peptidase‐4 inhibitor, improves recognition memory, oxidative stress and hippocampal neurogenesis and upregulates key genes involved in cognitive decline. Diabetes Obesity and Metabolism 17 403413. (https://doi.org/10.1111/dom.12432)

    • Search Google Scholar
    • Export Citation
  • GoldsteinBJFeinglosMNLuncefordJKJohnsonJWilliams-HermanDE & Sitagliptin 036 Study Group 2007 Effect of initial combination therapy with sitagliptin, a dipeptidyl peptidase-4 inhibitor, and metformin on glycemic control in patients with Type 2 diabetes. Diabetes Care 30 19791987. (https://doi.org/10.2337/dc07-0627)

    • Search Google Scholar
    • Export Citation
  • GribbleFMReimannF 2019 Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nature Reviews: Endocrinology 15 226237. (https://doi.org/10.1038/s41574-019-0168-8)

    • Search Google Scholar
    • Export Citation
  • HasibANGMTGaultVAKhanDParthsarathyVFlattPRIrwinN 2017 An enzymatically stable GIP/xenin hybrid peptide restores GIP sensitivity, enhances beta cell function and improves glucose homeostasis in high-fat-fed mice. Diabetologia 60 541552. (https://doi.org/10.1007/s00125-016-4186-y)

    • Search Google Scholar
    • Export Citation
  • HersHGHueL 1983 Gluconeogenesis and related aspects of glycolysis. Annual Review of Biochemistry 52 617653. (https://doi.org/10.1146/annurev.bi.52.070183.003153)

    • Search Google Scholar
    • Export Citation
  • HolstJJØrskovC 2004 The incretin approach for diabetes treatment: modulation of islet hormone release by GLP-1 agonism. Diabetes 53 (Supplement 3) S197S204. (https://doi.org/10.2337/diabetes.53.suppl_3.s197)

    • Search Google Scholar
    • Export Citation
  • HuiXFengTLiuQGaoYXuA 2016 The FGF21–adiponectin axis in controlling energy and vascular homeostasis. Journal of Molecular Cell Biology 8 110119. (https://doi.org/10.1093/jmcb/mjw013)

    • Search Google Scholar
    • Export Citation
  • IrwinNFlattPR 2015 New perspectives on exploitation of incretin peptides for the treatment of diabetes and related disorders. World Journal of Diabetes 6 12851295. (https://doi.org/10.4239/wjd.v6.i15.1285)

    • Search Google Scholar
    • Export Citation
  • IrwinNPathakVFlattPR 2015 A novel CCK-8/GLP-1 hybrid peptide exhibiting prominent insulinotropic, glucose-lowering and satiety actions with significant therapeutic potential in high-fat fed mice. Diabetes 64 29963009. (https://doi.org/10.2337/db15-0220)

    • Search Google Scholar
    • Export Citation
  • KhajaviNBiebermannHTschöpMDiMarchiR 2017 Treatment of diabetes and obesity by rationally designed peptide agonists functioning at multiple metabolic receptors. Endocrine Development 32 165182. (https://doi.org/10.1159/000475737)

    • Search Google Scholar
    • Export Citation
  • KhanDVasuSMoffettRCGaultVAFlattPRIrwinN 2017 Locally produced xenin and the neurotensinergic system in pancreatic islet function and β-cell survival. Biological Chemistry 399 7992. (https://doi.org/10.1515/hsz-2017-0136)

    • Search Google Scholar
    • Export Citation
  • KimYBPeroniODFrankeTFKahnBB 2000 Divergent regulation of Akt1 and Akt2 isoforms in insulin target tissues of obese Zucker rats. Diabetes 49 847856. (https://doi.org/10.2337/diabetes.49.5.847)

    • Search Google Scholar
    • Export Citation
  • KnopFKTaylorR 2013 Mechanism of metabolic advantages after bariatric surgery: it’s all gastrointestinal factors versus it’s all food restriction. Diabetes Care 36 (Supplement 2) S287S291. (https://doi.org/10.2337/dcS13-2032)

    • Search Google Scholar
    • Export Citation
  • KnopFKVilsbøllTHøjbergPVLarsenSMadsbadSVølundAHolstJJKrarupT 2007 Reduced incretin effect in Type 2 diabetes: cause or consequence of the diabetic state? Diabetes 56 19511959. (https://doi.org/10.2337/db07-0100)

    • Search Google Scholar
    • Export Citation
  • LindsayJRDuffyNAMcKillopAMArdillJO’HarteFPFlattPRBellPM 2005 Inhibition of dipeptidyl peptidase IV activity by oral metformin in Type 2 diabetes. Diabetic Medicine 22 654657. (https://doi.org/10.1111/j.1464-5491.2005.01461.x)

    • Search Google Scholar
    • Export Citation
  • LochheadPASaltIPWalkerKSHardieDGSutherlandC 2000 5-Aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes 49 896903. (https://doi.org/10.2337/diabetes.49.6.896)

    • Search Google Scholar
    • Export Citation
  • MartinCMGaultVAMcCleanSFlattPRIrwinN 2012 Degradation, insulin secretion, glucose-lowering and GIP additive actions of a palmitate-derivatised analogue of xenin-25. Biochemical Pharmacology 84 312319. (https://doi.org/10.1016/j.bcp.2012.04.015)

    • Search Google Scholar
    • Export Citation
  • MartinCMParthsarathyVPathakVGaultVAFlattPRIrwinN 2014 Characterisation of the biological activity of xenin-25 degradation fragment peptides. Journal of Endocrinology 221 193200. (https://doi.org/10.1530/JOE-13-0617)

    • Search Google Scholar
    • Export Citation
  • MartinCMParthsarathyVHasibANGMTMcCleanSFlattPRGaultVAIrwinN 2016 Biological activity and antidiabetic potential of C-terminal octapeptide fragments of the gut-derived hormone xenin. PLoS ONE 11 e0152818. (https://doi.org/10.1371/journal.pone.0152818)

    • Search Google Scholar
    • Export Citation
  • MoffettRCIrwinNFrancisJMFlattPR 2013 Alterations of glucose-dependent insulinotropic polypeptide and expression of genes involved in mammary gland and adipose tissue lipid metabolism during pregnancy and lactation. PLoS ONE 8 e78560. (https://doi.org/10.1371/journal.pone.0078560)

    • Search Google Scholar
    • Export Citation
  • MoffettRCVasuSThorensBDruckerDJFlattPR 2014 Incretin receptor null mice reveal key role of GLP-1 but not GIP in pancreatic beta cell adaptation to pregnancy. PLoS ONE 9 e96863. (https://doi.org/10.1371/journal.pone.0096863)

    • Search Google Scholar
    • Export Citation
  • MuJWoodsJZhouYPRoyRSLiZZycbandEFengYZhuLLiCHowardADet al. 2006 Chronic inhibition of dipeptidyl peptidase-4 with a sitagliptin analog preserves pancreatic β-cell mass and function in a rodent model of type 2 diabetes. Diabetes 55 16951704. (https://doi.org/10.2337/db05-1602)

    • Search Google Scholar
    • Export Citation
  • NauckMAHeimesaatMMOrskovCHolstJJEbertRCreutzfeldtW 1993 Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. Journal of Clinical Investigation 91 301307. (https://doi.org/10.1172/JCI116186)

    • Search Google Scholar
    • Export Citation
  • O’HarteFPMGrayAMFlattPR 1998 Gastric inhibitory polypeptide and effects of glycation on glucose transport and metabolism in isolated mouse abdominal muscle. Journal of Endocrinology 156 237243. (https://doi.org/10.1677/joe.0.1560237)

    • Search Google Scholar
    • Export Citation
  • ParthsarathyVIrwinNHasibAMartinCMMcCleanSBhatVKNgMTFlattPRGaultVA 2016 A novel chemically modified analogue of xenin-25 exhibits improved glucose-lowering and insulin-releasing properties. Biochimica et Biophysica Acta 1860 757764. (https://doi.org/10.1016/j.bbagen.2016.01.015)

    • Search Google Scholar
    • Export Citation
  • RosenstockJKlaffLJSchwartzSNorthrupJHolcombeJHWilhelmKTrautmannM 2010 Effects of exenatide and lifestyle modification on body weight and glucose tolerance in obese subjects with and without pre-diabetes. Diabetes Care 33 11731175. (https://doi.org/10.2337/dc09-1203)

    • Search Google Scholar
    • Export Citation
  • SchmidtWESiegelEGCreutzfeldtW 1985 Glucagon-like peptide-1 but not glucagon-like peptide-2 stimulates insulin release from isolated rat pancreatic islets. Diabetologia 28 704707. (https://doi.org/10.1007/bf00291980)

    • Search Google Scholar
    • Export Citation
  • ScottLJ 2017 Sitagliptin: a review in Type 2 diabetes. Drugs 77 209224. (https://doi.org/10.1007/s40265-016-0686-9)

  • SinglaPBardoloiAParkashAA 2010 Metabolic effects of obesity: a review. World Journal of Diabetes 1 7688. (https://doi.org/10.4239/wjd.v1.i3.76)

    • Search Google Scholar
    • Export Citation
  • TaylorAIIrwinNMcKillopAMPattersonSFlattPRGaultVA 2010 Evaluation of the degradation and metabolic effects of the gut peptide xenin on insulin secretion, glycaemic control and satiety. Journal of Endocrinology 207 8793. (https://doi.org/10.1677/JOE-10-0085)

    • Search Google Scholar
    • Export Citation
  • VasuSMoffettRCThorensBFlattPR 2014 Role of endogenous GLP-1 and GIP in beta cell compensatory responses to insulin resistance and cellular stress. PLoS ONE 9 e101005. (https://doi.org/10.1371/journal.pone.0101005)

    • Search Google Scholar
    • Export Citation
  • VilsbøllTHolstJJ 2004 Incretins, insulin secretion and type 2 diabetes mellitus. Diabetologia 47 357366. (https://doi.org/10.1007/s00125-004-1342-6)

    • Search Google Scholar
    • Export Citation
  • VincentRPLe RouxCW 2008 Changes in gut hormones after bariatric surgery. Clinical Endocrinology 69 173179. (https://doi.org/10.1111/j.1365-2265.2007.03164.x)

    • Search Google Scholar
    • Export Citation
  • WiceBMWangSCrimminsDLDiggs-AndrewsKAAlthageMCFordELTranHOhlendorfMGriestTAWangQet al. 2010 Xenin-25 potentiates glucose-dependent insulinotropic polypeptide action via a novel cholinergic relay mechanism. Journal of Biological Chemistry 285 1984219853. (https://doi.org/10.1074/jbc.M110.129304)

    • Search Google Scholar
    • Export Citation
  • WildingJP 2014 The importance of weight management in type 2 diabetes mellitus. International Journal of Clinical Practice 68 682691. (https://doi.org/10.1111/ijcp.12384)

    • Search Google Scholar
    • Export Citation
  • YeDWRongXLXuAMGuoJ 2017 Liver-adipose tissue crosstalk: a key player in the pathogenesis of glucolipid metabolic disease. Chinese Journal of Integrative Medicine 23 410414. (https://doi.org/10.1007/s11655-017-2810-4)

    • Search Google Scholar
    • Export Citation