Androgen signaling pathways driving reproductive and metabolic phenotypes in a PCOS mouse model

in Journal of Endocrinology
View More View Less
  • 1 Fertility and Research Centre, School of Women’s & Children’s Health, University of New South Wales Sydney, New South Wales, Australia
  • 2 Andrology Laboratory, ANZAC Research Institute, University of Sydney, Concord Hospital, Sydney, New South Wales, Australia
  • 3 Laboratory for Ageing Research, School of Medical Sciences, University of New South Wales Sydney, New South Wales, Australia

Correspondence should be addressed to K A Walters: k.walters@unsw.edu.au
Restricted access

As the mechanistic basis of polycystic ovary syndrome (PCOS) remains unknown, current management relies on symptomatic treatment. Hyperandrogenism is a major PCOS characteristic and evidence supports it playing a key role in PCOS pathogenesis. Classically, androgens can act directly through the androgen receptor (AR) or, indirectly, following aromatization, via the estrogen receptor (ER). We investigated the mechanism of androgenic actions driving PCOS by comparing the capacity of non-aromatizable dihydrotestosterone (DHT) and aromatizable testosterone to induce PCOS traits in WT and Ar-knockout (ARKO) mice. DHT and testosterone induced the reproductive PCOS-like features of acyclicity and anovulation in WT females. In ARKO mice, DHT did not cause reproductive dysfunction; however, testosterone treatment induced irregular cycles and ovulatory disruption. These findings indicate that direct AR actions and indirect, likely ER, actions of androgens are important mediators of PCOS reproductive traits. DHT, but not testosterone, induced an increase in body weight, body fat, serum cholesterol and adipocyte hypertrophy in WT mice, but neither androgen induced these metabolic features in ARKO mice. These data infer that direct AR-driven mechanisms are key in driving the development of PCOS metabolic traits. Overall, these findings demonstrate that differing PCOS traits can be mediated via different steroid signaling pathways and indicate that a phenotype-based treatment approach would ensure effective targeting of the underlying mechanisms.

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 2407 2407 207
Full Text Views 248 248 18
PDF Downloads 154 154 20
  • Abbott DH, Nicol LE, Levine JE, Xu N, Goodarzi MO & Dumesic DA 2013 Nonhuman primate models of polycystic ovary syndrome. Molecular and Cellular Endocrinology 373 2128. (https://doi.org/10.1016/j.mce.2013.01.013)

    • Search Google Scholar
    • Export Citation
  • Abi Salloum B, Veiga-Lopez A, Abbott DH, Burant CF & Padmanabhan V 2015 Developmental programming: exposure to testosterone excess disrupts steroidal and metabolic environment in pregnant sheep. Endocrinology 156 23232337. (https://doi.org/10.1210/en.2014-2006)

    • Search Google Scholar
    • Export Citation
  • Altintas KZ, Dilbaz B, Cirik DA, Ozelci R, Zengin T, Erginay ON & Dilbaz S 2017 The incidence of metabolic syndrome in adolescents with different phenotypes of PCOS. Ginekologia Polska 88 289295. (https://doi.org/10.5603/GP.a2017.0055)

    • Search Google Scholar
    • Export Citation
  • Arao Y, Hamilton KJ, Wu SP, Tsai MJ, Demayo FJ & Korach KS 2019 Dysregulation of hypothalamic-pituitary estrogen receptor alpha-mediated signaling causes episodic LH secretion and cystic ovary. FASEB Journal 33 73757386. (https://doi.org/10.1096/fj.201802653RR)

    • Search Google Scholar
    • Export Citation
  • Armstrong DT, Moon YS & Leung PC 1976 Uterotrophic effects of testosterone and 5alpha-dihydrotestosterone in intact and ovariectomized immature female rats. Biology of Reproduction 15 107114. (https://doi.org/10.1095/biolreprod15.1.107)

    • Search Google Scholar
    • Export Citation
  • Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, Janssen OE, Legro RS, Norman RJ, Taylor AE, et al. 2006 Positions statement: Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an androgen excess society guideline. Journal of Clinical Endocrinology and Metabolism 91 42374245. (https://doi.org/10.1210/jc.2006-0178)

    • Search Google Scholar
    • Export Citation
  • Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, Janssen OE, Legro RS, Norman RJ, Taylor AE, et al. 2009 The androgen excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertility and Sterility 91 456488. (https://doi.org/10.1016/j.fertnstert.2008.06.035)

    • Search Google Scholar
    • Export Citation
  • Baldani DP, Skrgatic L, Kasum M, Zlopasa G, Kralik Oguic S & Herman M 2019 Altered leptin, adiponectin, resistin and ghrelin secretion may represent an intrinsic polycystic ovary syndrome abnormality. Gynecological Endocrinology 35 401405. (https://doi.org/10.1080/09513590.2018.1534096)

    • Search Google Scholar
    • Export Citation
  • Brawer JR, Munoz M & Farookhi R 1986 Development of the polycystic ovarian condition (PCO) in the estradiol valerate-treated rat. Biology of Reproduction 35 647655. (https://doi.org/10.1095/biolreprod35.3.647)

    • Search Google Scholar
    • Export Citation
  • Caldwell AS, Middleton LJ, Jimenez M, Desai R, Mcmahon AC, Allan CM, Handelsman DJ & Walters KA 2014 Characterization of reproductive, metabolic, and endocrine features of polycystic ovary syndrome in female hyperandrogenic mouse models. Endocrinology 155 31463159. (https://doi.org/10.1210/en.2014-1196)

    • Search Google Scholar
    • Export Citation
  • Caldwell AS, Eid S, Kay CR, Jimenez M, Mcmahon AC, Desai R, Allan CM, Smith JT, Handelsman DJ & Walters KA 2015 Haplosufficient genomic androgen receptor signaling is adequate to protect female mice from induction of polycystic ovary syndrome features by prenatal hyperandrogenization. Endocrinology 156 14411452. (https://doi.org/10.1210/en.2014-1887)

    • Search Google Scholar
    • Export Citation
  • Caldwell ASL, Edwards MC, Desai R, Jimenez M, Gilchrist RB, Handelsman DJ & Walters KA 2017 Neuroendocrine androgen action is a key extraovarian mediator in the development of polycystic ovary syndrome. PNAS 114 E3334E3343. (https://doi.org/10.1073/pnas.1616467114)

    • Search Google Scholar
    • Export Citation
  • Cardoso RC, Veiga-Lopez A, Moeller J, Beckett E, Pease A, Keller E, Madrigal V, Chazenbalk G, Dumesic D & Padmanabhan V 2016 Developmental programming: impact of gestational steroid and metabolic milieus on adiposity and insulin sensitivity in prenatal testosterone-treated female sheep. Endocrinology 157 522535. (https://doi.org/10.1210/en.2015-1565)

    • Search Google Scholar
    • Export Citation
  • Chen J, Shen S, Tan Y, Xia D, Xia Y, Cao Y, Wang W, Wu X, Wang H, Yi L, et al. 2015 The correlation of aromatase activity and obesity in women with or without polycystic ovary syndrome. Journal of Ovarian Research 8 11. (https://doi.org/10.1186/s13048-015-0139-1)

    • Search Google Scholar
    • Export Citation
  • Cheng XB, Jimenez M, Desai R, Middleton LJ, Joseph SR, Ning G, Allan CM, Smith JT, Handelsman DJ & Walters KA 2013 Characterizing the neuroendocrine and ovarian defects of androgen receptor-knockout female mice. American Journal of Physiology: Endocrinology and Metabolism 305 E717E726. (https://doi.org/10.1152/ajpendo.00263.2013)

    • Search Google Scholar
    • Export Citation
  • Christakou CD & Diamanti-Kandarakis E 2008 Role of androgen excess on metabolic aberrations and cardiovascular risk in women with polycystic ovary syndrome. Women’s Health 4 583594. (https://doi.org/10.2217/17455057.4.6.583)

    • Search Google Scholar
    • Export Citation
  • Clark NM, Podolski AJ, Brooks ED, Chizen DR, Pierson RA, Lehotay DC & Lujan ME 2014 Prevalence of polycystic ovary syndrome phenotypes using updated criteria for polycystic ovarian morphology: an assessment of over 100 consecutive women self-reporting features of polycystic ovary syndrome. Reproductive Sciences 21 10341043. (https://doi.org/10.1177/1933719114522525)

    • Search Google Scholar
    • Export Citation
  • Davison SL & Davis SR 2003 Androgens in women. Journal of Steroid Biochemistry and Molecular Biology 85 363366. (https://doi.org/10.1016/s0960-0760(03)00204-8)

    • Search Google Scholar
    • Export Citation
  • Desai R, Harwood DT & Handelsman DJ 2019 Simultaneous measurement of 18 steroids in human and mouse serum by liquid chromatography–mass spectrometry without derivatization to profile the classical and alternate pathways of androgen synthesis and metabolism. Clinical Mass Spectrometry 11 4251. (https://doi.org/10.1016/j.clinms.2018.12.003)

    • Search Google Scholar
    • Export Citation
  • Diamanti-Kandarakis E, Mitrakou A, Raptis S, Tolis G & Duleba AJ 1998 The effect of a pure antiandrogen receptor blocker, flutamide, on the lipid profile in the polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism 83 26992705. (https://doi.org/10.1210/jcem.83.8.5041)

    • Search Google Scholar
    • Export Citation
  • Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS & Legro RS 2015 Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocrine Reviews 36 487525. (https://doi.org/10.1210/er.2015-1018)

    • Search Google Scholar
    • Export Citation
  • Dumesic DA, Akopians AL, Madrigal VK, Ramirez E, Margolis DJ, Sarma MK, Thomas AM, Grogan TR, Haykal R, Schooler TA, et al. 2016 Hyperandrogenism accompanies increased intra-abdominal fat storage in normal weight polycystic ovary syndrome women. Journal of Clinical Endocrinology and Metabolism 101 41784188. (https://doi.org/10.1210/jc.2016-2586)

    • Search Google Scholar
    • Export Citation
  • Gambineri A, Patton L, Vaccina A, Cacciari M, Morselli-Labate AM, Cavazza C, Pagotto U & Pasquali R 2006 Treatment with flutamide, metformin, and their combination added to a hypocaloric diet in overweight-obese women with polycystic ovary syndrome: a randomized, 12-month, placebo-controlled study. Journal of Clinical Endocrinology and Metabolism 91 39703980. (https://doi.org/10.1210/jc.2005-2250)

    • Search Google Scholar
    • Export Citation
  • Ghayee HK & Auchus RJ 2007 Basic concepts and recent developments in human steroid hormone biosynthesis. Reviews in Endocrine and Metabolic Disorders 8 289300. (https://doi.org/10.1007/s11154-007-9052-2)

    • Search Google Scholar
    • Export Citation
  • Gilling-Smith C, Willis DS, Beard RW & Franks S 1994 Hypersecretion of androstenedione by isolated thecal cells from polycystic ovaries. Journal of Clinical Endocrinology and Metabolism 79 11581165. (https://doi.org/10.1210/jcem.79.4.7962289)

    • Search Google Scholar
    • Export Citation
  • Glintborg D, Rubin KH, Nybo M, Abrahamsen B & Andersen M 2018 Cardiovascular disease in a nationwide population of Danish women with polycystic ovary syndrome. Cardiovascular Diabetology 17 37. (https://doi.org/10.1186/s12933-018-0680-5)

    • Search Google Scholar
    • Export Citation
  • Handelsman DJ, Teede HJ, Desai R, Norman RJ & Moran LJ 2017 Performance of mass spectrometry steroid profiling for diagnosis of polycystic ovary syndrome. Human Reproduction 32 418422. (https://doi.org/10.1093/humrep/dew328)

    • Search Google Scholar
    • Export Citation
  • Hillier SG, Whitelaw PF & Smyth CD 1994 Follicular oestrogen synthesis: the ‘two-cell, two-gonadotrophin’ model revisited. Molecular and Cellular Endocrinology 100 5154. (https://doi.org/10.1016/0303-7207(94)90278-x)

    • Search Google Scholar
    • Export Citation
  • Kar S 2012 Clomiphene citrate or letrozole as first-line ovulation induction drug in infertile PCOS women: a prospective randomized trial. Journal of Human Reproductive Sciences 5 262265. (https://doi.org/10.4103/0974-1208.106338)

    • Search Google Scholar
    • Export Citation
  • Kar S 2013 Anthropometric, clinical, and metabolic comparisons of the four Rotterdam PCOS phenotypes: a prospective study of PCOS women. Journal of Human Reproductive Sciences 6 194200. (https://doi.org/10.4103/0974-1208.121422)

    • Search Google Scholar
    • Export Citation
  • Keller E, Chazenbalk GD, Aguilera P, Madrigal V, Grogan T, Elashoff D, Dumesic DA & Abbott DH 2014 Impaired preadipocyte differentiation into adipocytes in subcutaneous abdominal adipose of PCOS-like female rhesus monkeys. Endocrinology 155 26962703. (https://doi.org/10.1210/en.2014-1050)

    • Search Google Scholar
    • Export Citation
  • Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S & Gustafsson JA 1997 Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138 863870. (https://doi.org/10.1210/endo.138.3.4979)

    • Search Google Scholar
    • Export Citation
  • Kupreeva M, Diane A, Lehner R, Watts R, Ghosh M, Proctor S & Vine D 2019 Effect of metformin and flutamide on insulin, lipogenic and androgen-estrogen signaling, and cardiometabolic risk in a PCOS-prone metabolic syndrome rodent model. American Journal of Physiology: Endocrinology and Metabolism 316 E16E33. (https://doi.org/10.1152/ajpendo.00018.2018)

    • Search Google Scholar
    • Export Citation
  • Legro RS 2016 Ovulation induction in polycystic ovary syndrome: current options. Best Practice and Research: Clinical Obstetrics and Gynaecology 37 152159. (https://doi.org/10.1016/j.bpobgyn.2016.08.001)

    • Search Google Scholar
    • Export Citation
  • Lim SS, Davies MJ, Norman RJ & Moran LJ 2012 Overweight, obesity and central obesity in women with polycystic ovary syndrome: a systematic review and meta-analysis. Human Reproduction Update 18 618637. (https://doi.org/10.1093/humupd/dms030)

    • Search Google Scholar
    • Export Citation
  • Livadas S, Pappas C, Karachalios A, Marinakis E, Tolia N, Drakou M, Kaldrymides P, Panidis D & Diamanti-Kandarakis E 2014 Prevalence and impact of hyperandrogenemia in 1,218 women with polycystic ovary syndrome. Endocrine 47 631638. (https://doi.org/10.1007/s12020-014-0200-7)

    • Search Google Scholar
    • Export Citation
  • Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L & Azziz R 2016 Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertility and Sterility 106 615. (https://doi.org/10.1016/j.fertnstert.2016.05.003)

    • Search Google Scholar
    • Export Citation
  • Lucis OJ, Hobkirk R, Hollenberg CH, Macdonald SA & Blahey P 1966 Polycystic ovaries associated with congenital adrenal hyperplasia. Canadian Medical Association Journal 94 17.

    • Search Google Scholar
    • Export Citation
  • March WA, Moore VM, Willson KJ, Phillips DI, Norman RJ & Davies MJ 2010 The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Human Reproduction 25 544551. (https://doi.org/10.1093/humrep/dep399)

    • Search Google Scholar
    • Export Citation
  • Mccarthy GF & Brawer JR 1990 Induction of Stein-Leventhal-like polycystic ovaries (PCO) in the rat: a new model for cystic ovarian disease. Anatomical Record 228 137144. (https://doi.org/10.1002/ar.1092280205)

    • Search Google Scholar
    • Export Citation
  • Mcnamara KM, Harwood DT, Simanainen U, Walters KA, Jimenez M & Handelsman DJ 2010 Measurement of sex steroids in murine blood and reproductive tissues by liquid chromatography-tandem mass spectrometry. Journal of Steroid Biochemistry and Molecular Biology 121 611618. (https://doi.org/10.1016/j.jsbmb.2010.02.001)

    • Search Google Scholar
    • Export Citation
  • Miller WL & Auchus RJ 2011 The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocrine Reviews 32 81151. (https://doi.org/10.1210/er.2010-0013)

    • Search Google Scholar
    • Export Citation
  • Moran LJ, Norman RJ & Teede HJ 2015 Metabolic risk in PCOS: phenotype and adiposity impact. Trends in Endocrinology and Metabolism 26 136143. (https://doi.org/10.1016/j.tem.2014.12.003)

    • Search Google Scholar
    • Export Citation
  • O’Reilly MW, Taylor AE, Crabtree NJ, Hughes BA, Capper F, Crowley RK, Stewart PM, Tomlinson JW & Arlt W 2014 Hyperandrogenemia predicts metabolic phenotype in polycystic ovary syndrome: the utility of serum androstenedione. Journal of Clinical Endocrinology and Metabolism 99 10271036. (https://doi.org/10.1210/jc.2013-3399)

    • Search Google Scholar
    • Export Citation
  • Pache TD & Fauser BC 1993 Polycystic ovaries in female-to-male transsexuals. Clinical Endocrinology 39 702703.

  • Padmanabhan V & Veiga-Lopez A 2013 Sheep models of polycystic ovary syndrome phenotype. Molecular and Cellular Endocrinology 373 820. (https://doi.org/10.1016/j.mce.2012.10.005)

    • Search Google Scholar
    • Export Citation
  • Paradisi R, Fabbri R, Battaglia C & Venturoli S 2013 Ovulatory effects of flutamide in the polycystic ovary syndrome. Gynecological Endocrinology 29 391395. (https://doi.org/10.3109/09513590.2012.754876)

    • Search Google Scholar
    • Export Citation
  • Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group 2004 Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Human Reproduction 19 4147. (https://doi.org/10.1093/humrep/deh098)

    • Search Google Scholar
    • Export Citation
  • Rubin KH, Glintborg D, Nybo M, Abrahamsen B & Andersen M 2017 Development and risk factors of Type 2 diabetes in a nationwide population of women with polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism 102 38483857. (https://doi.org/10.1210/jc.2017-01354)

    • Search Google Scholar
    • Export Citation
  • Ryan GE, Malik S & Mellon PL 2018 Antiandrogen treatment ameliorates reproductive and metabolic phenotypes in the letrozole-induced mouse model of PCOS. Endocrinology 159 17341747. (https://doi.org/10.1210/en.2017-03218)

    • Search Google Scholar
    • Export Citation
  • Shorakae S, Boyle J & Teede H 2014 Polycystic ovary syndrome: a common hormonal condition with major metabolic sequelae that physicians should know about. Internal Medicine Journal 44 720726. (https://doi.org/10.1111/imj.12495)

    • Search Google Scholar
    • Export Citation
  • Shukla A, Shukla GS & Radin NS 1992 Control of kidney size by sex hormones: possible involvement of glucosylceramide. American Journal of Physiology 262 F24F29. (https://doi.org/10.1152/ajprenal.1992.262.1.F24)

    • Search Google Scholar
    • Export Citation
  • Silva MS, Prescott M & Campbell RE 2018 Ontogeny and reversal of brain circuit abnormalities in a preclinical model of PCOS. JCI Insight 3 99405. (https://doi.org/10.1172/jci.insight.99405)

    • Search Google Scholar
    • Export Citation
  • Singh J, O'neill C & Handelsman DJ 1995 Induction of spermatogenesis by androgens in gonadotropin-deficient (hpg) mice. Endocrinology 136 53115321. (https://doi.org/10.1210/endo.136.12.7588276)

    • Search Google Scholar
    • Export Citation
  • Smith P, Steckler TL, Veiga-Lopez A & Padmanabhan V 2009 Developmental programming: differential effects of prenatal testosterone and dihydrotestosterone on follicular recruitment, depletion of follicular reserve, and ovarian morphology in sheep. Biology of Reproduction 80 726736. (https://doi.org/10.1095/biolreprod.108.072801)

    • Search Google Scholar
    • Export Citation
  • Stener-Victorin E, Lundeberg T, Waldenstrom U, Manni L, Aloe L, Gunnarsson S & Janson PO 2000 Effects of electro-acupuncture on nerve growth factor and ovarian morphology in rats with experimentally induced polycystic ovaries. Biology of Reproduction 63 14971503. (https://doi.org/10.1095/biolreprod63.5.1497)

    • Search Google Scholar
    • Export Citation
  • Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, Piltonen T, Norman RJ & International PCOS Network 2018 Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Human Reproduction 33 16021618. (https://doi.org/10.1093/humrep/dey256)

    • Search Google Scholar
    • Export Citation
  • Toulis KA, Goulis DG, Farmakiotis D, Georgopoulos NA, Katsikis I, Tarlatzis BC, Papadimas I & Panidis D 2009 Adiponectin levels in women with polycystic ovary syndrome: a systematic review and a meta-analysis. Human Reproduction Update 15 297307. (https://doi.org/10.1093/humupd/dmp006)

    • Search Google Scholar
    • Export Citation
  • Tripathy P, Sahu A, Sahu M & Nagy A 2018 Metabolic risk assessment of Indian women with polycystic ovarian syndrome in relation to four Rotterdam criteria based phenotypes. European Journal of Obstetrics, Gynecology, and Reproductive Biology 224 6065. (https://doi.org/10.1016/j.ejogrb.2018.02.031)

    • Search Google Scholar
    • Export Citation
  • Veiga-Lopez A, Steckler TL, Abbott DH, Welch KB, Mohankumar PS, Phillips DJ, Refsal K & Padmanabhan V 2011 Developmental programming: impact of excess prenatal testosterone on intrauterine fetal endocrine milieu and growth in sheep. Biology of Reproduction 84 8796. (https://doi.org/10.1095/biolreprod.110.086686)

    • Search Google Scholar
    • Export Citation
  • Walters KA 2015 Role of androgens in normal and pathological ovarian function. Reproduction 149 R193R218. (https://doi.org/10.1530/REP-14-0517)

    • Search Google Scholar
    • Export Citation
  • Walters KA, Allan CM, Jimenez M, Lim PR, Davey RA, Zajac JD, Illingworth P & Handelsman DJ 2007 Female mice haploinsufficient for an inactivated androgen receptor (AR) exhibit age-dependent defects that resemble the AR null phenotype of dysfunctional late follicle development, ovulation, and fertility. Endocrinology 148 36743684. (https://doi.org/10.1210/en.2007-0248)

    • Search Google Scholar
    • Export Citation
  • Walters KA, Bertoldo MJ & Handelsman DJ 2018a Evidence from animal models on the pathogenesis of PCOS. Best Practice and Research: Clinical Endocrinology and Metabolism 32 271281. (https://doi.org/10.1016/j.beem.2018.03.008)

    • Search Google Scholar
    • Export Citation
  • Walters KA, Gilchrist RB, Ledger WL, Teede HJ, Handelsman DJ & Campbell RE 2018b New perspectives on the pathogenesis of PCOS: neuroendocrine origins. Trends in Endocrinology and Metabolism 29 841852. (https://doi.org/10.1016/j.tem.2018.08.005)

    • Search Google Scholar
    • Export Citation
  • Walters KA, Rodriguez Paris V, Aflatounian A & Handelsman DJ 2019 Androgens and ovarian function: translation from basic discovery research to clinical impact. Journal of Endocrinology 242 R23R50. (https://doi.org/10.1530/JOE-19-0096)

    • Search Google Scholar
    • Export Citation
  • Wang R, Li W, Bordewijk EM, Legro RS, Zhang H, Wu X, Gao J, Morin-Papunen L, Homburg R, Konig TE, et al. 2019 First-line ovulation induction for polycystic ovary syndrome: an individual participant data meta-analysis. Human Reproduction Update 25 717732. (https://doi.org/10.1093/humupd/dmz029)

    • Search Google Scholar
    • Export Citation
  • Yu YY, Sun CX, Liu YK, Li Y, Wang L & Zhang W 2013 Promoter methylation of CYP19A1 gene in Chinese polycystic ovary syndrome patients. Gynecologic and Obstetric Investigation 76 209213. (https://doi.org/10.1159/000355314)

    • Search Google Scholar
    • Export Citation
  • Yuan X, Hu T, Zhao H, Huang Y, Ye R, Lin J, Zhang C, Zhang H, Wei G, Zhou H, et al. 2016 Brown adipose tissue transplantation ameliorates polycystic ovary syndrome. PNAS 113 27082713. (https://doi.org/10.1073/pnas.1523236113)

    • Search Google Scholar
    • Export Citation
  • Zawadzki J & Dunaif A 1992 Diagnostic criteria for polycystic syndrome: towards a rational approach. In Polycystic Ovary Syndrome, pp. 337384. Eds Dunaif A, Givens JR, Haseltine FP, & GR Merriam. Boston, MA. USA: Blackwell Scientific Publications.

    • Search Google Scholar
    • Export Citation
  • Zhang HY, Zhu FF, Xiong J, Shi XB & Fu SX 2009 Characteristics of different phenotypes of polycystic ovary syndrome based on the Rotterdam criteria in a large-scale Chinese population. BJOG 116 16331639. (https://doi.org/10.1111/j.1471-0528.2009.02347.x)

    • Search Google Scholar
    • Export Citation
  • Zhang B, Wang J, Shen S, Liu J, Sun J, Gu T, Ye X, Zhu D & Bi Y 2018 Association of androgen excess with glucose intolerance in women with polycystic ovary syndrome. BioMed Research International 2018 6869705. (https://doi.org/10.1155/2018/6869705)

    • Search Google Scholar
    • Export Citation