The placenta regulates materno-fetal nutrient transfer and secretes hormones that enable maternal physiological support of the pregnancy. In mice, these functions are performed by the labyrinth (Lz) and junctional (Jz) zones, respectively. Insulin-like growth factor 2 (Igf2) is an imprinted gene expressed by the conceptus that is important for promoting fetal growth and placenta formation. However, the specific role of Igf2 in the Jz in regulating placental endocrine function and fetal development is unknown. This study used a novel model to investigate the effect of conditional loss of Igf2 in the Jz (Jz-Igf2UE) on placental endocrine cell formation and the expression of hormones and IGF signaling components in placentas from female and male fetuses. Jz-Igf2UE altered gross placental structure and expression of key endocrine and signaling genes in a sexually dimorphic manner. The volumes of spongiotrophoblast and glycogen trophoblast in the Jz were decreased in placentas from female but not male fetuses. Expression of insulin receptor was increased and expression of the MAPK pathway genes (Mek1, P38α) decreased in the placental Jz of female but not male fetuses. In contrast, expression of the type-1 and -2 IGF receptors and the MAPK pathway genes (H-ras, N-ras, K-ras) was decreased in the placental Jz from male but not female fetuses. Expression of the steroidogenic gene, Cyp17a1, was increased and placental lactogen-2 was decreased in the placenta of both sexes. In summary, we report that Jz-Igf2UE alters the cellular composition, IGF signaling components and hormone expression of the placental Jz in a manner largely dependent on fetal sex.
Journal of Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 1109 | 102 | 4 |
PDF Downloads | 915 | 109 | 4 |
Abell AN, Granger DA, Johnson NL, Vincent-Jordan N, Dibble CF & Johnson GL 2009 Trophoblast stem cell maintenance by fibroblast growth factor 4 requires MEKK4 activation of Jun N-terminal kinase. Molecular and Cellular Biology 29 2748–2761. (https://doi.org/10.1128/MCB.01391-08)
Ain R, Canham LN & Soares MJ 2005 Dexamethasone-induced intrauterine growth restriction impacts the placental prolactin family, insulin-like growth factor-II and the Akt signaling pathway. Journal of Endocrinology 185 253–263. (https://doi.org/10.1677/joe.1.06039)
Baker J, Liu JP, Robertson EJ & Efstratiadis A 1993 Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75 73–82. (https://doi.org/10.1016/S0092-8674(05)80085-6)
Barbour LA, Shao J, Qiao L, Pulawa LK, Jensen DR, Bartke A, Garrity M, Draznin B & Friedman JE 2002 Human placental growth hormone causes severe insulin resistance in transgenic mice. American Journal of Obstetrics and Gynecology 186 512–517. (https://doi.org/10.1067/mob.2002.121256)
Barbour LA, Shao J, Qiao L, Leitner W, Anderson M, Friedman JE & Draznin B 2004 Human placental growth hormone increases expression of the p85 regulatory unit of phosphatidylinositol 3-kinase and triggers severe insulin resistance in skeletal muscle. Endocrinology 145 1144–1150. (https://doi.org/10.1210/en.2003-1297)
Barke TL, Money KM, Du L, Serezani A, Gannon M, Mirnics K & Aronoff DM 2019 Sex modifies placental gene expression in response to metabolic and inflammatory stress. Placenta 78 1–9. (https://doi.org/10.1016/j.placenta.2019.02.008)
Blanquart C, Achi J & Issad T 2008 Characterization of IRA/IRB hybrid IRs using bioluminescence resonance energy transfer. Biochemistry and Pharmacology 76 873–883. (https://doi.org/10.1016/j.bcp.2008.07.027)
Blois SM, Tirado-González I, Wu J, Barrientos G, Johnson B, Warren J, Freitag N, Klapp BF, Irmak S, Ergun S, et al.2012 Early expression of pregnancy-specific glycoprotein 22 (PSG22) by trophoblast cells modulates angiogenesis in mice. Biology of Reproduction 86 191. (https://doi.org/10.1095/biolreprod.111.098251)
Brănişteanu DD & Mathieu C 2003 Progesterone in gestational diabetes mellitus: guilty or not guilty? Trends in Endocrinology and Metabolism 14 54–56. (https://doi.org/10.1016/s1043-2760(03)00003-1)
Brelje TC, Scharp DW, Lacy PE, Ogren L, Talamantes F, Robertson M, Friesen HG & Sorenson RL 1993 Effect of homologous placental lactogens, prolactins, and growth hormones on islet B-cell division and insulin secretion in rat, mouse, and human islets: implication for placental lactogen regulation of islet function during pregnancy. Endocrinology 132 879–887. (https://doi.org/10.1210/endo.132.2.8425500)
Brelje TC, Stout LE, Bhagroo NV & Sorenson RL 2004 Distinctive roles for prolactin and growth hormone in the activation of signal transducer and activator of transcription 5 in pancreatic islets of langerhans. Endocrinology 145 4162–4175. (https://doi.org/10.1210/en.2004-0201)
Brice AL, Cheetham JE, Bolton VN, Hill NC & Schofield PN 1989 Temporal changes in the expression of the insulin-like growth factor II gene associated with tissue maturation in the human fetus. Development 106 543–554.
Briffa JF, Hosseini SS, Tran M, Moritz KM, Cuffe JSM & Wlodek ME 2017 Maternal growth restriction and stress exposure in rats differentially alters expression of components of the placental glucocorticoid barrier and nutrient transporters. Placenta 59 30–38. (https://doi.org/10.1016/j.placenta.2017.09.006)
Burton GJ, Fowden AL & Thornburg KL 2016 Placental origins of chronic disease. Physiological Reviews 96 1509–1565. (https://doi.org/10.1152/physrev.00029.2015)
Camm EJ, Botting KJ & Sferruzzi-Perri AN 2018 Near to one’s heart: the intimate relationship between the placenta and fetal heart. Frontiers in Physiology 9 629. (https://doi.org/10.3389/fphys.2018.00629)
Carter AM 2012 Evolution of placental function in mammals: the molecular basis of gas and nutrient transfer, hormone secretion, and immune responses. Physiological Reviews 92 1543–1576. (https://doi.org/10.1152/physrev.00040.2011)
Chellakooty M, Vangsgaard K, Larsen T, Scheike T, Falck-Larsen J, Legarth J, Andersson AM, Main KM, Skakkebaek NE & Juul A 2004 A longitudinal study of intrauterine growth and the placental growth hormone (GH)-insulin-like growth factor I axis in maternal circulation: association between placental GH and fetal growth. Journal of Clinical Endocrinology and Metabolism 89 384–391. (https://doi.org/10.1210/jc.2003-030282)
Chen H, Li Y, Shi J & Song W 2016 Role and mechanism of insulin‐like growth factor 2 on the proliferation of human trophoblasts in vitro. Journal of Obstetrics and Gynaecology Research 42 44–51. (https://doi.org/10.1111/jog.12853)
Clifton VL 2010 Review: Sex and the human placenta: mediating differential strategies of fetal growth and survival. Placenta 31 (Supplement) S33–S39. (https://doi.org/10.1016/j.placenta.2009.11.010)
Coan PM, Ferguson-Smith AC & Burton GJ 2004 Developmental dynamics of the definitive mouse placenta assessed by stereology. Biology of Reproduction 70 1806–1813. (https://doi.org/10.1095/biolreprod.103.024166)
Coan PM, Conroy N, Burton GJ & Ferguson‐Smith AC 2006 Origin and characteristics of glycogen cells in the developing murine placenta. Developmental Dynamics 235 3280–3294. (https://doi.org/10.1002/dvdy.20981)
Constância M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R, Stewart F, Kelsey G, Fowden A, Sibley C, et al.2002 Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 417 945–948. (https://doi.org/10.1038/nature00819)
Constância M, Angiolini E, Sandovici I, Smith P, Smith R, Kelsey G, Dean W, Ferguson-Smith A, Sibley CP, Reik W, et al.2005 Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the Igf2 gene and placental transporter systems. PNAS 102 19219–19224. (https://doi.org/10.1073/pnas.0504468103)
Cox B, Kotlyar M, Evangelou AI, Ignatchenko V, Ignatchenko A, Whiteley K, Jurisica I, Adamson SL, Rossant J & Kislinger T 2009 Comparative systems biology of human and mouse as a tool to guide the modeling of human placental pathology. Molecular Systems Biology 5 279. (https://doi.org/10.1038/msb.2009.37)
Cox B, Sharma P, Evangelou AI, Whiteley K, Ignatchenko V, Ignatchenko A, Baczyk D, Czikk M, Kingdom J, Rossant J, et al.2011 Translational analysis of mouse and human placental protein and mRNA reveals distinct molecular pathologies in human preeclampsia. Molecular and Cellular Proteomics 10 M111.012526. (https://doi.org/10.1074/mcp.M111.012526)
Cuffe JSM, Dickinson H, Simmons DG & Moritz KM 2011 Sex specific changes in placental growth and MAPK following short term maternal dexamethasone exposure in the mouse. Placenta 32 981–989. (https://doi.org/10.1016/j.placenta.2011.09.009)
Cuffe JS, Walton SL, Singh RR, Spiers JG, Bielefeldt‐Ohmann H, Wilkinson L, Little MH & Moritz KM 2014 Mid‐to late term hypoxia in the mouse alters placental morphology, glucocorticoid regulatory pathways and nutrient transporters in a sex‐specific manner. Journal of Physiology 592 3127–3141. (https://doi.org/10.1113/jphysiol.2014.272856)
Curchoe C, Zhang S, Bin Y, Zhang X, Yang L, Feng D, O’Neill M & Tian XC 2005 Promoter-specific expression of the imprinted IGF2 gene in cattle (Bos taurus). Biology of Reproduction 73 1275–1281. (https://doi.org/10.1095/biolreprod.105.044727)
Dearden L & Ockleford C 1983 Structure of human trophoblasts: correlation with function. In Biology of Trophoblast. Eds Loke YW & Whyte A. New York, NY, USA: Elsevier, pp. 69–110.
DeChiara TM, Efstratiadis A & Robertsen EJ 1990 A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345 78–80. (https://doi.org/10.1038/345078a0)
DeChiara TM, Robertson EJ & Efstratiadis A 1991 Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64 849–859. (https://doi.org/10.1016/0092-8674(91)90513-x)
Demetriou C, Abu-Amero S, Thomas AC, Ishida M, Aggarwal R, Al-Olabi L, Leon LJ, Stafford JL, Syngelaki A, Peebles D, et al.2014 Paternally expressed, imprinted insulin-like growth factor-2 in chorionic villi correlates significantly with birth weight. PLoS ONE 9 e85454. (https://doi.org/10.1371/journal.pone.0085454)
Desforges M & Sibley CP 2009 Placental nutrient supply and fetal growth. International Journal of Developmental Biology 18 377–390. (https://doi.org/10.1387/ijdb.082765md)
Dimasuay KG, Boeuf P, Powell TL & Jansson T 2016 Placental responses to changes in the maternal environment determine fetal growth. Frontiers in Physiology 7 12. (https://doi.org/10.3389/fphys.2016.00012)
Dong Y, Zhang L, Zhang S, Bai Y, Chen H, Sun X, Yong W, Li W, Colvin SC, Rhodes SJ, et al.2012 Phosphatase of regenerating liver 2 (PRL2) is essential for placental development by down-regulating PTEN (phosphatase and tensin homologue deleted on chromosome 10) and activating Akt protein. Journal of Biological Chemistry 287 32172–32179. (https://doi.org/10.1074/jbc.M112.393462)
Esquiliano DR, Guo W, Liang L, Dikkes P & Lopez MF 2009 Placental glycogen stores are increased in mice with H19 null mutations but not in those with insulin or IGF type 1 receptor mutations. Placenta 30 693–699. (https://doi.org/10.1016/j.placenta.2009.05.004)
Finn EH, Smith CL, Rodriguez J, Sidow A & Baker JC 2014 Maternal bias and escape from X chromosome imprinting in the midgestation mouse placenta. Developmental Biology 390 80–92. (https://doi.org/10.1016/j.ydbio.2014.02.020)
Forbes K, Westwood M, Baker PN & Aplin JD 2008 Insulin-like growth factor I and II regulate the life cycle of trophoblast in the developing human placenta. American Journal of Physiology: Cell Physiology 294 C1313–C1322. (https://doi.org/10.1152/ajpcell.00035.2008)
Fowden AL, Giussani DA & Forhead AJ 2006 Intrauterine programming of physiological systems: causes and consequences. Physiology 21 29–37. (https://doi.org/10.1152/physiol.00050.2005)
Frago S, Nicholls RD, Strickland M, Hughes J, Williams C, Garner L, Surakhy M, Maclean R, Rezgui D, Prince SN, et al.2016 Functional evolution of IGF2: IGF2R domain 11 binding generates novel structural interactions and a specific IGF2 antagonist. PNAS 113 E2766–E2775. (https://doi.org/10.1073/pnas.1513023113)
Gabory A, Ferry L, Fajardy I, Jouneau L, Gothié JD, Vigé A, Fleur C, Mayeur S, Gallou-Kabani C, Gross MS, et al.2012 Maternal diets trigger sex-specific divergent trajectories of gene expression and epigenetic systems in mouse placenta. PLoS ONE 7 e47986. (https://doi.org/10.1371/journal.pone.0047986)
Gaccioli F & Lager S 2016 Placental nutrient transport and intrauterine growth restriction. Frontiers in Physiology 7 40. (https://doi.org/10.3389/fphys.2016.00040)
Gårdebjer EM, Cuffe JSM, Pantaleon M, Wlodek ME & Moritz KM 2014 Periconceptional alcohol consumption causes fetal growth restriction and increases glycogen accumulation in the late gestation rat placenta. Placenta 35 50–57. (https://doi.org/10.1016/j.placenta.2013.10.008)
Georgiades P, Ferguson-Smith AC & Burton GJ 2002 Comparative developmental anatomy of the murine and human definitive placentae. Placenta 23 3–19. (https://doi.org/10.1053/plac.2001.0738)
Germain-Lee EL, Janicot M, Lammers R, Ullrich A & Casella SJ 1992 Expression of a type I insulin-like growth factor receptor with low affinity for insulin-like growth factor II. Biochemical Journal 281 413–417. (https://doi.org/10.1042/bj2810413)
Giroux S, Tremblay M, Bernard D, Cardin-Girard JF, Aubry S, Larouche L, Rousseau S, Huot J, Landry J, Jeannotte L, et al.1999 Embryonic death of Mek1-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta. Current Biology 9 369–372. (https://doi.org/10.1016/s0960-9822(99)80164-x)
Gluckman PD, Hanson MA, Cooper C & Thornburg KL 2008 Effect of in utero and early-life conditions on adult health and disease. New England Journal of Medicine 359 61–73. (https://doi.org/10.1056/NEJMra0708473)
Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Münsterberg A, Vivian N, Goodfellow P & Lovell-Badge R 1990 A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346 245–250. (https://doi.org/10.1038/346245a0)
Guvakova MA 2007 Insulin-like growth factors control cell migration in health and disease. International Journal of Biochemistry and Cell Biology 39 890–909. (https://doi.org/10.1016/j.biocel.2006.10.013)
Gyles SL, Burns CJ, Whitehouse BJ, Sugden D, Marsh PJ, Persaud SJ & Jones PM 2001 ERKs regulate cyclic AMP-induced steroid synthesis through transcription of the steroidogenic acute regulatory (StAR) gene. Journal of Biological Chemistry 276 34888–34895. (https://doi.org/10.1074/jbc.M102063200)
Haley VL, Barnes DJ, Sandovici I, Constancia M, Graham CF, Pezzella F, Bühnemann C, Carter EJ & Hassan AB 2012 Igf2 pathway dependency of the Trp53 developmental and tumour phenotypes. EMBO Molecular Medicine 4 705–718. (https://doi.org/10.1002/emmm.201101105)
Han VK, Bassett NI, Walton JO & Challis JR 1996 The expression of insulin-like growth factor (IGF) and IGF-binding protein (IGFBP) genes in the human placenta and membranes: evidence for IGF-IGFBP interactions at the feto-maternal interface. Journal of Clinical Endocrinology and Metabolism 81 2680–2693. (https://doi.org/10.1210/jcem.81.7.8675597)
Hasan MZ, Ikawati M, Tocharus J, Kawaichi M & Oka C 2015 Abnormal development of placenta in HtrA1-deficient mice. Developmental Biology 397 89–102. (https://doi.org/10.1016/j.ydbio.2014.10.015)
Higgins JS, Vaughan OR, de Liger EF, Fowden AL & Sferruzzi-Perri AN 2016 Placental phenotype and resource allocation to fetal growth are modified by the timing and degree of hypoxia during mouse pregnancy. Journal of Physiology 594 1341–1356. (https://doi.org/10.1113/JP271057)
Huang X, Liu G, Guo J & Su Z 2018 The PI3K/AKT pathway in obesity and type 2 diabetes. International Journal of Biological Sciences 14 1483–1496. (https://doi.org/10.7150/ijbs.27173)
Ishida M, Ohashi S, Kizaki Y, Naito JI, Horiguchi K & Harigaya T 2007 Expression profiling of mouse placental lactogen II and its correlative genes using a cDNA microarray analysis in the developmental mouse placenta. Journal of Reproduction and Development 53 69–76. (https://doi.org/10.1262/jrd.18002)
Jarrett JC 2nd, Ballejo G, Saleem TH, Tsibris JC & Spellacy WN 1984 The effect of prolactin and relaxin on insulin binding by adipocytes from pregnant women. American Journal of Obstetrics and Gynecology 149 250–255. (https://doi.org/10.1016/0002-9378(84)90223-0)
Jones JI & Clemmons DR 1995 Insulin-like growth factors and their binding proteins: biological actions. Endocrine Reviews 16 3–34. (https://doi.org/10.1210/edrv-16-1-3)
Kalisch-Smith JI, Simmons DG, Dickinson H & Moritz KM 2017 Review: Sexual dimorphism in the formation, function and adaptation of the placenta. Placenta 54 10–16. (https://doi.org/10.1016/j.placenta.2016.12.008)
Kent LN, Ohboshi S & Soares MJ 2012 Akt1 and insulin-like growth factor 2 (Igf2) regulate placentation and fetal/postnatal development. International Journal of Developmental Biology 56 255–261. (https://doi.org/10.1387/ijdb.113407lk)
Koutsaki M, Sifakis S, Zaravinos A, Koutroulakis D, Koukoura O & Spandidos DA 2011 Decreased placental expression of hPGH, IGF-I and IGFBP-1 in pregnancies complicated by fetal growth restriction. Growth Hormone and IGF Research 21 31–36. (https://doi.org/10.1016/j.ghir.2010.12.002)
L’Allemand DA, Penhoat AR, Lebrethon MC, Ardevol R, Baehr V, Oelkers W & Saez JM 1996 Insulin-like growth factors enhance steroidogenic enzyme and corticotropin receptor messenger ribonucleic acid levels and corticotropin steroidogenic responsiveness in cultured human adrenocortical cells. Journal of Clinical Endocrinology and Metabolism 81 3892–3897. (https://doi.org/10.1210/jcem.81.11.8923834)
Laviola L, Perrini S, Belsanti G, Natalicchio A, Montrone C, Leonardini A, Vimercati A, Scioscia M, Selvaggi L, Giorgino R, et al.2005 Intrauterine growth restriction in humans is associated with abnormalities in placental insulin-like growth factor signaling. Endocrinology 146 1498–1505. (https://doi.org/10.1210/en.2004-1332)
LaVoie HA & King SR 2009 Transcriptional regulation of steroidogenic genes: STARD1, CYP11A1 and HSD3B. Experimental Biology and Medicine 234 880–907. (https://doi.org/10.3181/0903-MR-97)
Le TN, Elsea SH, Romero R, Chaiworapongsa T & Francis GL 2013 Prolactin receptor gene polymorphisms are associated with gestational diabetes. Genetic Testing and Molecular Biomarkers 17 567–571. (https://doi.org/10.1089/gtmb.2013.0009)
Lescisin KR, Varmuza S & Rossant J 1988 Isolation and characterization of a novel trophoblast-specific cDNA in the mouse. Genes and Development 2 1639–1646. (https://doi.org/10.1101/gad.2.12a.1639)
Leturque A, Burnol AF, Ferre P & Girard J 1984 Pregnancy-induced insulin resistance in the rat: assessment by glucose clamp technique. American Journal of Physiology 246 E25–E31. (https://doi.org/10.1152/ajpendo.1984.246.1.E25)
Li HY, Chang SP, Yuan CC, Chao HT, Ng HT & Sung YJ 2003 Induction of p38 mitogen-activated protein kinase-mediated apoptosis is involved in outgrowth of trophoblast cells on endometrial epithelial cells in a model of human trophoblast-endometrial interactions. Biology of Reproduction 69 1515–1524. (https://doi.org/10.1095/biolreprod.103.015669)
Liang L, Guo WH, Esquiliano DR, Asai M, Rodriguez S, Giraud J, Kushner JA, White MF & Lopez MF 2010 Insulin-like growth factor 2 and the insulin receptor, but not insulin, regulate fetal hepatic glycogen synthesis. Endocrinology 151 741–747. (https://doi.org/10.1210/en.2009-0705)
Liao S, Vickers MH, Taylor RS, Fraser M, McCowan LME, Baker PN & Perry JK 2017 Maternal serum placental growth hormone, insulin-like growth factors and their binding proteins at 20 weeks’ gestation in pregnancies complicated by gestational diabetes mellitus. Hormones 16 282–290. (https://doi.org/10.14310/horm.2002.1747)
Lopez MF, Dikkes P, Zurakowski DA & Villa-Komaroff L 1996 Insulin-like growth factor II affects the appearance and glycogen content of glycogen cells in the murine placenta. Endocrinology 137 2100–2108. (https://doi.org/10.1210/endo.137.5.8612553)
Lopez MF, Dikkes P, Zurakowski D, Villa-Komaroff L & Majzoub JA 1999 Regulation of hepatic glycogen in the insulin-like growth factor II-deficient mouse. Endocrinology 140 1442–1448. (https://doi.org/10.1210/endo.140.3.6602)
López-Tello J, Pérez-García V, Khaira J, Kusinski LC, Cooper WN, Andreani A, Grant I, Fernández DLE, Lam BY, Hemberger M, et al.2019 Fetal and trophoblast PI3K p110α have distinct roles in regulating resource supply to the growing fetus in mice. eLife 8 e45282. (https://doi.org/10.7554/eLife.45282.001)
Lowe R, Gemma C, Rakyan VK & Holland ML 2015 Sexually dimorphic gene expression emerges with embryonic genome activation and is dynamic throughout development. BMC Genomics 16 295. (https://doi.org/10.1186/s12864-015-1506-4)
Lubik AA, Gunter JH, Hollier BG, Ettinger S, Fazli L, Stylianou N, Hendy SC, Adomat HH, Gleave ME, Pollak M, et al.2013 IGF2 increases de novo steroidogenesis in prostate cancer cells. Endocrine-Related Cancer 20 173–186. (https://doi.org/10.1530/ERC-12-0250)
Mangwiro YTM, Cuffe JSM, Briffa JF, Mahizir D, Anevska K, Jefferies AJ, Hosseini S, Romano T, Moritz KM & Wlodek ME 2018 Maternal exercise in rats upregulates the placental insulin-like growth factor system with diet- and sex-specific responses: minimal effects in mothers born growth restricted. Journal of Physiology 596 5947–5964. (https://doi.org/10.1113/JP275758)
Mao J, Zhang X, Sieli PT, Falduto MT, Torres KE & Rosenfeld CS 2010 Contrasting effects of different maternal diets on sexually dimorphic gene expression in the murine placenta. PNAS 107 5557–5562. (https://doi.org/10.1073/pnas.1000440107)
McClain DA 1991 Different ligand affinities of the two human insulin receptor splice variants are reflected in parallel changes in sensitivity for insulin action. Molecular Endocrinology 5 734–739. (https://doi.org/10.1210/mend-5-5-734)
McIntyre HD, Serek R, Crane DI, Veveris-Lowe T, Parry A, Johnson S, Leung KC, Ho KK, Bougoussa M, Hennen G, et al.2000 Placental growth hormone (GH), GH-binding protein, and insulin-like growth factor axis in normal, growth-retarded, and diabetic pregnancies: correlations with fetal growth. Journal of Clinical Endocrinology and Metabolism 85 1143–1150. (https://doi.org/10.1210/jcem.85.3.6480)
McLellan AS, Fischer B, Dveksler G, Hori T, Wynne F, Ball M, Okumura K, Moore T & Zimmermann W 2005 Structure and evolution of the mouse pregnancy-specific glycoprotein (Psg) gene locus. BMC Genomics 6 4. (https://doi.org/10.1186/1471-2164-6-4)
Mesiano S & Jaffe RB 1993 Interaction of insulin-like growth factor-II and estradiol directs steroidogenesis in the human fetal adrenal toward dehydroepiandrosterone sulfate production. Journal of Clinical Endocrinology and Metabolism 77 754–758. (https://doi.org/10.1210/jcem.77.3.8396578)
Miller WL 2002 Androgen biosynthesis from cholesterol to DHEA. Molecular and Cellular Endocrinology 198 7–14. (https://doi.org/10.1016/s0303-7207(02)00363-5)
Mirlesse V, Frankenne F, Alsat E, Poncelet M, Hennen G & Evain-Brion D 1993 Placental growth hormone levels in normal pregnancy and in pregnancies with intrauterine growth retardation. Pediatric Research 34 439–442. (https://doi.org/10.1203/00006450-199310000-00011)
Mudgett JS, Ding J, Guh-Siesel L, Chartrain NA, Yang L, Gopal S & Shen MM 2000 Essential role for p38α mitogen-activated protein kinase in placental angiogenesis. PNAS 97 10454–10459. (https://doi.org/10.1073/pnas.180316397)
Musial B, Fernandez-Twinn DS, Vaughan OR, Ozanne SE, Voshol P, Sferruzzi-Perri AN & Fowden AL 2016 Proximity to delivery alters insulin sensitivity and glucose metabolism in pregnant mice. Diabetes 65 851–860. (https://doi.org/10.2337/db15-1531)
Napso T, Yong HEJ, Lopez-Tello J & Sferruzzi-Perri AN 2018 The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation. Frontiers in Physiology 9 1091. (https://doi.org/10.3389/fphys.2018.01091)
Napso T, Hung YP, Davidge ST, Care AS & Sferruzzi-Perri AN 2019 Advanced maternal age compromises fetal growth and induces sex-specific changes in placental phenotype in rats. Scientific Reports 9 1. (https://doi.org/10.1038/s41598-019-53199-x)
Naruse M, Ono R, Irie M, Nakamura K, Furuse T, Hino T, Oda K, Kashimura M, Yamada I, Wakana S, et al.2014 Sirh7/Ldoc1 knockout mice exhibit placental P4 overproduction and delayed parturition. Development 141 4763–4771. (https://doi.org/10.1242/dev.114520)
Ngala RA, Fondjo LA, Gmagna P, Ghartey FN & Awe MA 2017 Placental peptides metabolism and maternal factors as predictors of risk of gestational diabetes in pregnant women. A case-control study. PLoS ONE 12 e0181613. (https://doi.org/10.1371/journal.pone.0181613)
Nogues N, Del Rio JA, Perez-Riba M, Soriano E, Flavell RA & Boronat A 1997 Placenta-specific expression of the rat growth hormone-releasing hormone gene promoter in transgenic mice. Endocrinology 138 3222–3227. (https://doi.org/10.1210/endo.138.8.5295)
Oka Y, Rozek LM & Czech MP 1985 Direct demonstration of rapid insulin-like growth factor II receptor internalization and recycling in rat adipocytes. Insulin stimulates 125I-insulin-like growth factor II degradation by modulating the IGF-II receptor recycling process. Journal of Biological Chemistry 260 9435–9442.
Õunap K 2016 Silver-Russell syndrome and Beckwith-Wiedemann syndrome: opposite phenotypes with heterogeneous molecular etiology. Molecular Syndromology 7 110–121. (https://doi.org/10.1159/000447413)
Plows JF, Stanley JL, Baker PN, Reynolds CM & Vickers MH 2018 The pathophysiology of gestational diabetes mellitus. International Journal of Molecular Sciences 19 3342. (https://doi.org/10.3390/ijms19113342)
Rakoczy J, Padmanabhan N, Krzak AM, Kieckbusch J, Cindrova-Davies T & Watson ED 2017 Dynamic expression of TET1, TET2, and TET3 dioxygenases in mouse and human placentas throughout gestation. Placenta 59 46–56. (https://doi.org/10.1016/j.placenta.2017.09.008)
Redline RW, Chernicky CL, Tan HQ, Ilan J & Ilan J 1993 Differential expression of insulin‐like growth factor‐II in specific regions of the late (post day 9.5) murine placenta. Molecular Reproduction and Development 36 121–129. (https://doi.org/10.1002/mrd.1080360202)
Rosenfeld CS 2015 Sex-specific placental responses in fetal development. Endocrinology 156 3422–3434. (https://doi.org/10.1210/en.2015-1227)
Sferruzzi-Perri AN 2018 Regulating needs: Exploring the role of insulin-like growth factor-2 signalling in materno-fetal resource allocation. Placenta 64 16–22. (https://doi.org/10.1016/j.placenta.2018.01.005)
Sferruzzi-Perri AN & Camm EJ 2016 The programming power of the placenta. Frontiers in Physiology 7 33. (https://doi.org/10.3389/fphys.2016.00033)
Sferruzzi-Perri AN, Macpherson AM, Roberts CT & Robertson SA 2009 Csf2 null mutation alters placental gene expression and trophoblast glycogen cell and giant cell abundance in mice. Biology of Reproduction 81 207–221. (https://doi.org/10.1095/biolreprod.108.073312)
Sferruzzi‐Perri AN, Owens JA, Pringle KG & Roberts CT 2011a The neglected role of insulin‐like growth factors in the maternal circulation regulating fetal growth. Journal of Physiology 589 7–20. (https://doi.org/10.1113/jphysiol.2010.198622)
Sferruzzi-Perri AN, Vaughan OR, Coan PM, Suciu MC, Darbyshire R, Constancia M, Burton GJ & Fowden AL 2011b Placental-specific Igf2 deficiency alters developmental adaptations to undernutrition in mice. Endocrinology 152 3202–3212. (https://doi.org/10.1210/en.2011-0240)
Sferruzzi-Perri AN, Vaughan OR, Forhead AJ & Fowden AL 2013a Hormonal and nutritional drivers of intrauterine growth. Current Opinion in Clinical Nutrition and Metabolic Care 16 298–309. (https://doi.org/10.1097/MCO.0b013e32835e3643)
Sferruzzi-Perri AN, Vaughan OR, Haro M, Cooper WN, Musial B, Charalambous M, Pestana D, Ayyar S, Ferguson-Smith AC, Burton GJ, et al.2013b An obesogenic diet during mouse pregnancy modifies maternal nutrient partitioning and the fetal growth trajectory. FASEB Journal 27 3928–3937. (https://doi.org/10.1096/fj.13-234823)
Sferruzzi-Perri AN, López-Tello J, Fowden AL & Constancia M 2016 Maternal and fetal genomes interplay through phosphoinositol 3-kinase (PI3K)-p110α signaling to modify placental resource allocation. PNAS 113 11255–11260. (https://doi.org/10.1073/pnas.1602012113)
Sferruzzi-Perri AN, Sandovici I, Constancia M & Fowden AL 2017 Placental phenotype and the insulin‐like growth factors: resource allocation to fetal growth. Journal of Physiology 595 5057–5093. (https://doi.org/10.1113/JP273330)
Sferruzzi-Perri AN, López-Tello J, Napso T & Yong HE 2020 Exploring the causes and consequences of maternal metabolic maladaptations during pregnancy: lessons from animal models. Placenta [epub]. (https://doi.org/10.1016/j.placenta.2020.01.015)
Simmons DG & Cross JC 2005 Determinants of trophoblast lineage and cell subtype specification in the mouse placenta. Developmental Biology 284 12–24. (https://doi.org/10.1016/j.ydbio.2005.05.010)
Simmons DG, Fortier AL & Cross JC 2007 Diverse subtypes and developmental origins of trophoblast giant cells in the mouse placenta. Developmental Biology 304 567–578. (https://doi.org/10.1016/j.ydbio.2007.01.009)
Simmons DG, Rawn SM, Davies A, Hughes M & Cross JC 2008 Spatial and temporal expression of the 23 murine prolactin/placental lactogen-related genes is not associated with their position in the locus. BMC Genomics 9 352. (https://doi.org/10.1186/1471-2164-9-352)
Snyder SK, Wessner DH, Wessells JL, Waterhouse RM, Wahl LM, Zimmermann W & Dveksler GS 2001 Pregnancy-specific glycoproteins function as immunomodulators by inducing secretion of IL-10, IL-6 and TGF-beta1 by human monocytes. American Journal of Reproductive Immunology 45 205–216. (https://doi.org/10.1111/j.8755-8920.2001.450403.x)
Soares MJ 2004 The prolactin and growth hormone families: pregnancy-specific hormones/cytokines at the maternal-fetal interface. Reproductive Biology and Endocrinology 2 51. (https://doi.org/10.1186/1477-7827-2-51)
Soos MA, Field CE & Siddle K 1993 Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity. Biochemical Journal 290 419–426. (https://doi.org/10.1042/bj2900419)
Spicer LJ & Aad PY 2007 Insulin-like growth factor (IGF) 2 stimulates steroidogenesis and mitosis of bovine granulosa cells through the IGF1 receptor: role of follicle-stimulating hormone and IGF2 receptor. Biology of Reproduction 77 18–27. (https://doi.org/10.1095/biolreprod.106.058230)
Stojanov T, Alechna S & O’Neill C 1999 In-vitro fertilization and culture of mouse embryos in vitro significantly retards the onset of insulin-like growth factor-II expression from the zygotic genome. Molecular Human Reproduction 5 116–124. (https://doi.org/10.1093/molehr/5.2.116)
Su R, Wang C, Feng H, Lin L, Liu X, Wei Y & Yang H 2016 Alteration in expression and methylation of IGF2/H19 in placenta and umbilical cord blood are associated with macrosomia exposed to intrauterine hyperglycemia. PLoS ONE 11 e0148399. (https://doi.org/10.1371/journal.pone.0148399)
Sutter-Dub MT & Dazey B 1979 Role of progesterone in the insulin-resistance during pregnancy in the rat (author’s transl). Annales d’Endocrinologie 40 37–38.
Takeda K, Toda K, Saibara T, Nakagawa M, Saika K, Onishi T, Sugiura T & Shizuta Y 2003 Progressive development of insulin resistance phenotype in male mice with complete aromatase (CYP19) deficiency. Journal of Endocrinology 176 237–246. (https://doi.org/10.1677/joe.0.1760237)
Thomsen BM, Clausen HV, Larsen LG, Nürnberg L, Ottesen B & Thomsen HK 1997 Patterns in expression of insulin-like growth factor-II and of proliferative activity in the normal human first and third trimester placenta demonstrated by non-isotopic in situ hybridization and immunohistochemical staining for MIB-1. Placenta 18 145–154. (https://doi.org/10.1016/s0143-4004(97)90086-2)
Thordarson G, Galosy S, Gudmundsson GO, Newcomer B, Sridaran R & Talamantes F 1997 Interaction of mouse placental lactogens and androgens in regulating progesterone release in cultured mouse luteal cells. Endocrinology 138 3236–3241. (https://doi.org/10.1210/endo.138.8.5309)
Tunster SJ, Tycko B & John RM 2010 The imprinted Phlda2 gene regulates extraembryonic energy stores. Molecular and Cellular Biology 30 295–306. (https://doi.org/10.1128/MCB.00662-09)
Tunster SJ, Creeth HDJ & John RM 2016a The imprinted Phlda2 gene modulates a major endocrine compartment of the placenta to regulate placental demands for maternal resources. Developmental Biology 409 251–260. (https://doi.org/10.1016/j.ydbio.2015.10.015)
Tunster SJ, McNamara GI, Creeth HDJ & John RM 2016b Increased dosage of the imprinted Ascl2 gene restrains two key endocrine lineages of the mouse placenta. Developmental Biology 418 55–65. (https://doi.org/10.1016/j.ydbio.2016.08.014)
Vasavada RC, Garcia-Ocaña A, Zawalich WS, Sorenson RL, Dann P, Syed M, Ogren L, Talamantes F & Stewart AF 2000 Targeted expression of placental lactogen in the beta cells of transgenic mice results in beta cell proliferation, islet mass augmentation, and hypoglycemia. Journal of Biological Chemistry 275 15399–15406. (https://doi.org/10.1074/jbc.275.20.15399)
Wada T, Hori S, Sugiyama M, Fujisawa E, Nakano T, Tsuneki H, Nagira K, Saito S & Sasaoka T 2010 Progesterone inhibits glucose uptake by affecting diverse steps of insulin signaling in 3T3-L1 adipocytes. American Journal of Physiology: Endocrinology and Metabolism 298 E881–E888. (https://doi.org/10.1152/ajpendo.00649.2009)
Weinhaus AJ, Stout LE, Bhagroo NV, Brelje TC & Sorenson RL 2007 Regulation of glucokinase in pancreatic islets by prolactin: a mechanism for increasing glucose-stimulated insulin secretion during pregnancy. Journal of Endocrinology 193 367–381. (https://doi.org/10.1677/JOE-07-0043)
Wislocki GB & Bennett HS 1943 The histology and cytology of the human and monkey placenta, with special reference to the trophoblast. American Journal of Anatomy 73 335–449. (https://doi.org/10.1002/aja.1000730303)
Yamauchi Y, Riel JM, Stoytcheva Z & Ward MA 2014 Two Y genes can replace the entire Y chromosome for assisted reproduction in the mouse. Science 343 69–72. (https://doi.org/10.1126/science.1242544)
Online ISSN: 1479-6805
Print ISSN: 0022-0795
CONTACT US
Bioscientifica Ltd | Starling House | 1600 Bristol Parkway North | Bristol BS34 8YU | UK
Bioscientifica Ltd | Registered in England no 3190519