Thyroid-stimulating hormone receptor (TSHR) fusion proteins in Graves’ disease

in Journal of Endocrinology
Authors:
Hans-Peter Holthoff Procorde – advancecor, Martinsried, Germany

Search for other papers by Hans-Peter Holthoff in
Current site
Google Scholar
PubMed
Close
,
Kerstin Uhland Procorde – advancecor, Martinsried, Germany

Search for other papers by Kerstin Uhland in
Current site
Google Scholar
PubMed
Close
,
Gabor Laszlo Kovacs 1st Department of Internal Medicine, Flor Ferenc Hospital, Kistarcsa, Hungary

Search for other papers by Gabor Laszlo Kovacs in
Current site
Google Scholar
PubMed
Close
,
Andreas Reimann Procorde – advancecor, Martinsried, Germany

Search for other papers by Andreas Reimann in
Current site
Google Scholar
PubMed
Close
,
Kristin Adler Procorde – advancecor, Martinsried, Germany

Search for other papers by Kristin Adler in
Current site
Google Scholar
PubMed
Close
,
Clara Wenhart Procorde – advancecor, Martinsried, Germany

Search for other papers by Clara Wenhart in
Current site
Google Scholar
PubMed
Close
, and
Martin Ungerer Procorde – advancecor, Martinsried, Germany

Search for other papers by Martin Ungerer in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to M Ungerer: ungerer@procorde.com

*(H-P Holthoff and K Uhland contributed equally to this work)

Restricted access
Rent on DeepDyve

Sign up for journal news

Graves’ disease is an autoimmune disorder, which is characterized by stimulatory antibodies targeting the human thyrotropin receptor (TSHR), resulting in hyperthyroidism and multiple organ damage. We systematically investigated monomeric and dimeric fusion proteins of the A subunit of TSHR for efficacy to bind to the monoclonal patient antibody M22, to interact with Graves’ patient serum samples, and to impact on anti-TSHR antibody titers, hyperthyroidism, tachycardia and other in vivo read-outs in a long-term mouse model of Graves’ disease induced by immunization with a recombinant adenovirus encoding TSHR A. Binding assays and functional measurements of TSHR-dependent cAMP formation showed binding of monomeric TSHR-His and dimeric TSHR-Fc to the anti-TSHR antibody M22 at low-effective concentrations (EC50 of 5.7 nmol/L and 8.6 nmol/L) and inhibition of the effects of this antibody at high efficiencies (IC50 values of 16–20 nmol/L). Both proteins also block the effects of polyclonal anti-TSHR antibodies occurring in Graves’ patient sera with somewhat lower average efficiencies (mean IC50 values of 29 nmol/L and 68 nmol/L). However, in vivo characterization of epicutaneous patch administrations of TSHR-Fc at doses of 0.3 and 0.6 mg/kg body weight in a murine Graves’ disease model did not result in any improvement of disease parameters. In conclusion, high affinity binding of TSHR-Fc to pathological anti-TSHR antibodies was not matched by efficacy to improve Graves’ disease parameter in a long-term mouse model.

 

  • Collapse
  • Expand
  • Bahn RS 2010 Graves’ opthalmopathy. New England Journal of Medicine 362 726738. (https://doi.org/10.1056/NEJMra0905750)

  • Bynoe MS, Evans JT, Viret C & Janeway CA Jr 2003 Epicutaneous immunization with autoantigenic peptides induces T suppressor cells that prevent experimental allergic encephalomyelitis. Immunity 19 317328. (https://doi.org/10.1016/s1074-7613(03)00239-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chazenbalk GD, Wang Y, Guo J, Hutchison JS, Segal D, Jaume JC, McLachlan SM & Rapoport B 1999 A mouse monoclonal antibody to a thyrotropin receptor ectodomain variant provides insight into the exquisite antigenic conformational requirement, epitopes and in vivo concentration of human autoantibodies. Journal of Clinical Endocrinology and Metabolism 84 702710. (https://doi.org/10.1210/jcem.84.2.5481)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chazenbalk GD, McLachlan SM, Pichurin P, Yan XM & Rapoport B 2001 A prion-like shift between two conformational forms of a recombinant thyrotropin receptor A-subunit module: purification and stabilization using chemical chaperones of the form reactive with Graves’ autoantibodies. Journal of Clinical Endocrinology and Metabolism 86 12871293. (https://doi.org/10.1210/jcem.86.3.7363)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chazenbalk GD, Pichurin P, Chen CR, Latrofa F, Johnstone AP, McLachlan SM & Rapoport B 2002 Thyroid-stimulating autoantibodies in Graves’ disease preferentially recognize the free A subunit, not the thyrotropin holoreceptor. Journal of Clinical Investigation 110 209217. (https://doi.org/10.1172/JCI15745)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen CR, Pichurin P, Nagayama Y, Latrofa F, Rapoport B & McLachlan SM 2003 The thyrotropin receptor autoantigen in Graves’ disease is the culprit as well as the victim. Journal of Clinical Investigation 111 18971904. (https://doi.org/10.1172/JCI17069)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen CR, Hubbard PA, Salazar LM, McLachlan SM, Murali R & Rapoport B 2015 Crystal structure of a TSH Receptor monoclonal antibody: insight into Graves’ disease pathogenesis. Molecular Endocrinology 29 99107. (https://doi.org/10.1210/me.2014-1257)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Faßbender J, Holthoff HP, Li Z & Ungerer M 2019 Therapeutic effects of short cyclic and combined epitope peptides in a long-term model of Graves’ disease and orbitopathy. Thyroid 29 258267. (https://doi.org/10.1089/thy.2018.0326)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Frank CU, Braeth S, Dietrich JW, Wanjura D & Loos U 2015 Bridge Technology with TSH receptor chimera for sensitive direct detection of TSHR antibodies causing Graves’ disease: analytical and clinical evaluation. Hormone and Metabolic Research 47 880888. (https://doi.org/10.1055.org/s-0035-1554662)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hamidi S, Chen CR, Murali R, McLachlan SM & Rapoport B 2013 Probing structural variability at the N terminus of the TSH Receptor with a murine monoclonal antibody that distinguishes between two receptor conformational forms. Endocrinology 154 562571. (https://doi.org/10.1210/en.2012-1822)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Holthoff HP, Göbel S, Li ZM, Fassbender J, Reimann A, Zeibig S, Lohse MJ, Münch G & Ungerer M 2015 Prolonged TSH receptor A subunit immunization of female mice leads to a long-term model of Graves’ disease, tachycardia and cardiac hypertrophy. Endocrinology 156 15771589. (https://doi.org/10.1210/en.2014-1813)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Holthoff HP, Li ZM, Fassbender J, Reimann A, Adler K, Münch G & Ungerer M 2017 Cyclic peptides for effective treatment in a long-term model of Graves’ disease and orbitopathy in female mice. Endocrinology 158 23762390. (https://doi.org/10.1210/en.2016-1845)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jansson L, Martin K, Wraith DC, Jahraus A & Vrolix K 2016 Composition which comprises peptides derived from TSHR. Patent application WO 2016/103213. Geneva, Switzerland: World Intellectual Property Organization.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jansson L, Vrolix K, Jahraus A, Martin KF & Wraith DC 2018 Immunotherapy with apitopes blocks immune response to TSH receptor in HLA-DR transgenic mice. Endocrinology 159 34463457. (https://doi.org/10.1210/en.2018-00306)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McLachlan SM, Aliesky HA & Rapoport B 2019 Nanoparticles bearing TSH receptor protein and a tolerogenic molecule do not induce immune tolerance but exacerbate thyroid autoimmunity in hTSHR/NOD.H2h4 mice. Journal of Immunology 202 25702577. (https://doi.org/10.4049/jimmunol.1900038)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miller-Gallacher J, Sanders P, Young S, Sullivan A, Baker S, Reddington SC, Clue M, Kabelis K, Clark J, Wilmot J, et al. 2019 Crystal structure of a ligand-free stable TSH receptor leucine-rich repeat domain. Journal of Molecular Endocrinology 62 117128. (https://doi.org/10.1530/JME-18-0213)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Misharin AV, Nagayama Y, Aliesky HA, Mizutori Y, Rapoport B & McLachlan SM 2009 Attenuation of induced hyperthyroidism in mice by pretreatment with thyrotropin receptor protein: deviation of thyroid-stimulating to nonfunctional antibodies. Endocrinology 150 39443952. (https://doi.org/10.1210/en.2009-0181)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mizutori Y, Chen CR, Latrofa F, McLachlan SM & Rapoport B 2009 Evidence that shed thyrotropin receptor A subunits drive affinity maturation of autoantibodies causing Graves’ disease. Journal of Clinical Endocrinology and Metabolism 94 927935. (https://doi.org/10.1210/jc.2008-2134)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pearce SHS, Dayan C, Wraith DC, Barrell K, Olive N, Jansson L, Walker-Smith T, Carnegie C, Martin KF, Boelaert K, et al. 2019 Antigen-specific immunotherapy with thyrotropin receptor peptides in Graves' hyperthyroidism: a phase I study. Thyroid 29 10031011. (https://doi.org/10.1089/thy.2019.0036)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rapoport B, Aliesky HA, Chen CR & McLachlan SM 2015 Evidence that TSH Receptor A-subunit multimers, not monomers, drive antibody affinity maturation in Graves’ disease. Journal of Clinical Endocrinology and Metabolism 100 E871E875. (https://doi.org/10.1210/jc.2015-1528)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ross DS 2011 Radioiodine therapy for hyperthyroidism. New England Journal of Medicine 364 542550. (https://doi.org/10.1056/NEJMct1007101)

  • Sanders J, Chirgadze DY, Sanders P, Baker S, Sullivan A, Bhardwaja A, Bolton J, Reeve M, Nakatake N, Evans M, et al. 2007 Crystal structure of the TSH receptor in complex with a thyroid-stimulating autoantibody. Thyroid 17 395410. (https://doi.org/10.1089/thy.2007.0034)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schwarz-Lauer L, Chazenbalk GD, McLachlan SM, Ochi Y, Nagayama Y & Rapoport B 2002 Evidence for a simplified view of autoantibody interactions with the thyrotropin receptor. Thyroid 12 115120. (https://doi.org/10.1089/105072502753522347)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Smith TJ & Hegedüs L 2016 Graves’ disease. New England Journal of Medicine 375 15521565. (https://doi.org/10.1056/NEJMra1510030)

  • Smith BR, Bolton J, Young S, Collyer A, Weeden A, Bradbury J, Weightman D, Perros P, Sanders J & Furmaniak J 2004 A new assay for thyrotropin receptor autoantibodies. Thyroid 14 830835. (https://doi.org/10.1089/thy.2004.14.830)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Walczak A, Siger M, Ciach A, Szczepanik M & Selmaj K 2013 Transdermal application of myelin peptides in multiple sclerosis treatment. JAMA Neurology 70 11051109. (https://doi.org/10.1001/jamaneurol.2013.3022)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weetman AP 2000 Graves’ disease. New England Journal of Medicine 343 12361248. (https://doi.org/10.1056/NEJM200010263431707)

  • Wildner P & Selmaj KW 2017 Multiple sclerosis: skin-induced antigen-specific immune tolerance. Journal of Neuroimmunology 311 4958. (https://doi.org/10.1016/j.jneuroim.2017.08.001)

    • PubMed
    • Search Google Scholar
    • Export Citation