Peripheral interleukin-1β inhibits arcuate kiss1 cells and LH pulses in female mice

in Journal of Endocrinology

Correspondence should be addressed to K M Breen: kbchurch@ucsd.edu

*(K N Makowski and M J Kreisman contributed equally to this work)

Restricted access

Peripheral immune/inflammatory challenges rapidly disrupt reproductive neuroendocrine function. This inhibition is considered to be centrally mediated via suppression of gonadotropin-releasing hormone secretion, yet the neural pathway(s) for this effect remains unclear. We tested the hypothesis that interleukin-1β inhibits pulsatile luteinizing hormone secretion in female mice via inhibition of arcuate kisspeptin cell activation, a population of neurons considered to be the gonadotropin-releasing hormone pulse generator. In the first experiment, we determined that the inhibitory effect of peripheral interleukin-1β on luteinizing hormone secretion was enhanced by estradiol. We next utilized serial sampling and showed that interleukin-1β reduced the frequency of luteinizing hormone pulses in ovariectomized female mice treated with estradiol. The interleukin-1β-induced suppression of pulse frequency was associated with reduced kisspeptin cell activation, as determined by c-Fos coexpression, but not as a result of impaired responsiveness to kisspeptin challenge. Together, these data suggest an inhibitory action of interleukin-1β upstream of kisspeptin receptor activation. We next tested the hypothesis that estradiol enhances the activation of brainstem nuclei responding to interleukin-1β. We determined that the expression of interleukin-1 receptor was elevated within the brainstem following estradiol. Interleukin-1β induced c-Fos in the area postrema, ventrolateral medulla, and nucleus of the solitary tract; however, the response was not increased by estradiol. Collectively, these data support a neural mechanism whereby peripheral immune/inflammatory stress impairs reproductive neuroendocrine function via inhibition of kisspeptin cell activation and reduced pulsatile luteinizing hormone secretion. Furthermore, these findings implicate the influence of estradiol on peripherally mediated neural pathways such as those activated by peripheral cytokines.

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 125 125 114
Full Text Views 10 10 8
PDF Downloads 9 9 7
  • BattagliaDFBrownMEKrasaHBThrunLAViguieCKarschFJ 1998 Systemic challenge with endotoxin stimulates corticotropin-releasing hormone and arginine vasopressin secretion into hypophyseal portal blood: coincidence with gonadotropin-releasing hormone suppression. Endocrinology 139 41754181. (https://doi.org/10.1210/endo.139.10.6226)

    • Search Google Scholar
    • Export Citation
  • BaurKHachABernardiRESpanagelRBadingHBengtsonCP 2018 c-Fos marking of identified midbrain neurons coactive after nicotine administration in-vivo. Journal of Comparative Neurology 526 20192031. (https://doi.org/10.1002/cne.24471)

    • Search Google Scholar
    • Export Citation
  • BourAMWestendorpRGLaterveerJCBollenELRemarqueEJ 2000 Interaction of indomethacin with cytokine production in whole blood. Potential mechanism for a brain-protective effect. Experimental Gerontology 35 10171024. (https://doi.org/10.1016/s0531-5565(00)00128-5)

    • Search Google Scholar
    • Export Citation
  • BullerKXuYDayasCDayT 2001 Dorsal and ventral medullary catecholamine cell groups contribute differentially to systemic interleukin-1beta-induced hypothalamic pituitary adrenal axis responses. Neuroendocrinology 73 129138. (https://doi.org/10.1159/000054629)

    • Search Google Scholar
    • Export Citation
  • ChenMDO’ByrneKTChiappiniSEHotchkissJKnobilE 1992 Hypoglycemic ‘stress’ and gonadotropin-releasing hormone pulse generator activity in the rhesus monkey: role of the ovary. Neuroendocrinology 56 666673. (https://doi.org/10.1159/000126291)

    • Search Google Scholar
    • Export Citation
  • CirielloJCaversonMM 2016 Effect of estrogen on vagal afferent projections to the brainstem in the female. Brain Research 1636 2142. (https://doi.org/10.1016/j.brainres.2016.01.041)

    • Search Google Scholar
    • Export Citation
  • CravoRMFrazaoRPerelloMOsborne-LawrenceSWilliamsKWZigmanJMViannaCEliasCF 2013 Leptin signaling in Kiss1 neurons arises after pubertal development. PLoS ONE 8 e58698. (https://doi.org/10.1371/journal.pone.0058698)

    • Search Google Scholar
    • Export Citation
  • CunninghamETMiselisRRSawchenkoPE 1994 The relationship of efferent projections from the area postrema to vagal motor and brain stem catecholamine-containing cell groups: an axonal transport and immunohistochemical study in the rat. Neuroscience 58 635648. (https://doi.org/10.1016/0306-4522(94)90087-6)

    • Search Google Scholar
    • Export Citation
  • EbisuiOFukataJTominagaTMurakamiNKobayashiHSegawaHMuroSNaitoYNakaiYMasuiY 1992 Roles of interleukin-1 alpha and -1 beta in endotoxin-induced suppression of plasma gonadotropin levels in rats. Endocrinology 130 33073313. (https://doi.org/10.1210/endo.130.6.1597143)

    • Search Google Scholar
    • Export Citation
  • EricssonAKovacsKJSawchenkoPE 1994 A functional anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrine neurons. Journal of Neuroscience 14 897913. (https://doi.org/10.1523/JNEUROSCI.14-02-00897.1994)

    • Search Google Scholar
    • Export Citation
  • FranklinKBJPaxinosG 2013 Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates. Amsterdam, Netherlands: Academic Press.

  • GoodmanRLKarschFJ 1980 Pulsatile secretion of luteinizing hormone: differential suppression by ovarian steroids. Endocrinology 107 12861290. (https://doi.org/10.1210/endo-107-5-1286)

    • Search Google Scholar
    • Export Citation
  • GoodmanRLLehmanMNSmithJTCoolenLMDe OliveiraCVJafarzadehshiraziMRPereiraAIqbalJCaratyACiofiP 2007 Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B. Endocrinology 148 57525760. (https://doi.org/10.1210/en.2007-0961)

    • Search Google Scholar
    • Export Citation
  • HansenMKTaishiPChenZKruegerJM 1998 Vagotomy blocks the induction of interleukin-1beta (IL-1beta) mRNA in the brain of rats in response to systemic IL-1beta. Journal of Neuroscience 18 22472253. (https://doi.org/10.1523/JNEUROSCI.18-06-02247.1998)

    • Search Google Scholar
    • Export Citation
  • HarlowELaneD 2006 Mounting samples in gelvatol or mowiol. CSH Protocols 2006 pdb.prot4461. (https://doi.org/10.1101/pdb.prot4461)

  • IshizukaYIshidaYKunitakeTKatoKHanamoriTMitsuyamaYKannanH 1997 Effects of area postrema lesion and abdominal vagotomy on interleukin-1 beta-induced norepinephrine release in the hypothalamic paraventricular nucleus region in the rat. Neuroscience Letters 223 5760. (https://doi.org/10.1016/s0304-3940(97)13388-2)

    • Search Google Scholar
    • Export Citation
  • KarschFJBattagliaDFBreenKMDebusNHarrisTG 2002 Mechanisms for ovarian cycle disruption by immune/inflammatory stress. Stress 5 101112. (https://doi.org/10.1080/10253890290027868)

    • Search Google Scholar
    • Export Citation
  • Kinsey-JonesJSLiXFKnoxAMWilkinsonESZhuXLChaudharyAAMilliganSRLightmanSLO’ByrneKT 2009 Down-regulation of hypothalamic kisspeptin and its receptor, Kiss1r, mRNA expression is associated with stress-induced suppression of luteinising hormone secretion in the female rat. Journal of Neuroendocrinology 21 2029. (https://doi.org/10.1111/j.1365-2826.2008.01807.x)

    • Search Google Scholar
    • Export Citation
  • KreismanMMcCoshRTianKSongCBreenK 2019 Estradiol enables chronic corticosterone to inhibit pulsatile LH secretion and suppress Kiss1 neuronal activation in female mice. Neuroendocrinology 110 501516. (https://doi.org/10.1159/000502978)

    • Search Google Scholar
    • Export Citation
  • LeeHYWhitesideMBHerkenhamM 1998 Area postrema removal abolishes stimulatory effects of intravenous interleukin-1beta on hypothalamic-pituitary-adrenal axis activity and c-fos mRNA in the hypothalamic paraventricular nucleus. Brain Research Bulletin 46 495503. (https://doi.org/10.1016/s0361-9230(98)00045-8)

    • Search Google Scholar
    • Export Citation
  • LivakKJSchmittgenTD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25 402408. (https://doi.org/10.1006/meth.2001.1262)

    • Search Google Scholar
    • Export Citation
  • MatsuwakiTEskilssonAKugelbergUJonssonJIBlomqvistA 2014 Interleukin-1beta induced activation of the hypothalamus-pituitary-adrenal axis is dependent on interleukin-1 receptors on non-hematopoietic cells. Brain Behavior and Immunity 40 166173. (https://doi.org/10.1016/j.bbi.2014.03.015)

    • Search Google Scholar
    • Export Citation
  • McCoshRBKreismanMJBreenKM 2018 Frequent tail-tip blood sampling in mice for the assessment of pulsatile luteinizing hormone secretion. Journal of Visualized Experiments 31 57894. (https://doi.org/10.3791/57894)

    • Search Google Scholar
    • Export Citation
  • McCoshRBKreismanMJTianKHoBSThackrayVGBreenKM 2019 Insulin-induced hypoglycemia suppresses pulsatile LH secretion and arcuate kiss1 cell activation in female mice. Journal of Neuroendocrinology 31 e12813. (https://doi.org/10.1111/jne.12813)

    • Search Google Scholar
    • Export Citation
  • McEnteeCPFinlayCMLavelleEC 2019 Divergent roles for the IL-1 family in gastrointestinal homeostasis and inflammation. Frontiers in Immunology 10 1266. (https://doi.org/10.3389/fimmu.2019.01266)

    • Search Google Scholar
    • Export Citation
  • MohanKumarSMMohanKumarPS 2002 Effects of interleukin-1 beta on the steroid-induced luteinizing hormone surge: role of norepinephrine in the medial preoptic area. Brain Research Bulletin 58 405409. (https://doi.org/10.1016/s0361-9230(02)00809-2)

    • Search Google Scholar
    • Export Citation
  • MooreAMCoolenLMLehmanMN 2019 Kisspeptin/neurokinin B/dynorphin (KNDy) cells as integrators of diverse internal and external cues: evidence from viral-based monosynaptic tract-tracing in mice. Scientific Reports 9 14768. (https://doi.org/10.1038/s41598-019-51201-0)

    • Search Google Scholar
    • Export Citation
  • RivestSTorresGRivierC 1992 Differential effects of central and peripheral injection of interleukin-1 beta on brain c-fos expression and neuroendocrine functions. Brain Research 587 1323. (https://doi.org/10.1016/0006-8993(92)91424-d)

    • Search Google Scholar
    • Export Citation
  • RivierCValeW 1989 In the rat, interleukin-1 alpha acts at the level of the brain and the gonads to interfere with gonadotropin and sex steroid secretion. Endocrinology 124 21052109. (https://doi.org/10.1210/endo-124-5-2105)

    • Search Google Scholar
    • Export Citation
  • SawchenkoPESwansonLW 1982 The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Research 257 275325. (https://doi.org/10.1016/0165-0173(82)90010-8)

    • Search Google Scholar
    • Export Citation
  • SchiltzJCSawchenkoPE 2007 Specificity and generality of the involvement of catecholaminergic afferents in hypothalamic responses to immune insults. Journal of Comparative Neurology 502 455467. (https://doi.org/10.1002/cne.21329)

    • Search Google Scholar
    • Export Citation
  • SchindelinJArganda-CarrerasIFriseEKaynigVLongairMPietzschTPreibischSRuedenCSaalfeldSSchmidB 2012 Fiji: an open-source platform for biological-image analysis. Nature Methods 9 676682. (https://doi.org/10.1038/nmeth.2019)

    • Search Google Scholar
    • Export Citation
  • SilvaJFHenriquesPCCampideli-SantanaACAraujo-LopesRAquinoNSSHipolitoLTMLopes-AguiarCReisAMGrattanDRSzawkaRE 2020 Estradiol potentiates but is not essential for prolactin-induced suppression of luteinizing hormone pulses in female rats. Endocrinology 161 bqaa022. (https://doi.org/10.1210/endocr/bqaa022)

    • Search Google Scholar
    • Export Citation
  • SteynFJWanYClarksonJVeldhuisJDHerbisonAEChenC 2013 Development of a methodology for and assessment of pulsatile luteinizing hormone secretion in juvenile and adult male mice. Endocrinology 154 49394945. (https://doi.org/10.1210/en.2013-1502)

    • Search Google Scholar
    • Export Citation
  • TonsfeldtKJSchoellerELBrusmanLECuiLJLeeJMellonPL 2019 The contribution of the circadian gene Bmal1 to female fertility and the generation of the preovulatory luteinizing hormone surge. Journal of the Endocrine Society 3 716733. (https://doi.org/10.1210/js.2018-00228)

    • Search Google Scholar
    • Export Citation
  • TurnbullAVRivierCL 1999 Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiological Reviews 79 171. (https://doi.org/10.1152/physrev.1999.79.1.1)

    • Search Google Scholar
    • Export Citation
  • van der KooyDKodaLY 1983 Organization of the projections of a circumventricular organ: the area postrema in the rat. Journal of Comparative Neurology 219 328338. (https://doi.org/10.1002/cne.902190307)

    • Search Google Scholar
    • Export Citation
  • YangJASongCIHughesJKKreismanMJParraRAHaisenlederDJKauffmanASBreenKM 2017 Acute psychosocial stress inhibits LH pulsatility and Kiss1 neuronal activation in female mice. Endocrinology 158 37163723. (https://doi.org/10.1210/en.2017-00301)

    • Search Google Scholar
    • Export Citation
  • YeoSHKyleVBlouetCJonesSColledgeWH 2019 Mapping neuronal inputs to Kiss1 neurons in the arcuate nucleus of the mouse. PLoS ONE 14 e0213927. (https://doi.org/10.1371/journal.pone.0213927)

    • Search Google Scholar
    • Export Citation