ACE2 modulates glucose homeostasis through GABA signaling during metabolic stress

in Journal of Endocrinology
View More View Less
  • 1 Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
  • 2 Department of Orthopedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Correspondence should be addressed to L Yuan: yuanli18cn@126.com
Restricted access

The angiotensin-converting enzyme 2 (ACE2)/angiotensin 1–7 (A1–7)/MAS axis and glutamate decarboxylase 67 (GAD67)/gamma-aminobutyric acid (GABA) signal both exist in the islet and play important roles in regulating blood glucose metabolism. It has been reported that the activation of ACE2 in the brain increases GABA expression to improve biological effects; however, it is unclear whether there is functional correlation between the ACE2/A1–7/MAS axis and GAD67/GABA signal in the islet. In this study, we showed that the ACE2/A1–7/MAS and GABA signaling systems decreased in the islet of different metabolic stress models. In ACE2-knockout mice, we found that GAD67 and GABA expression decreased significantly, which was reversed by exogenous administration of A1–7. Furthermore, A1–7 mediated PDX1 and AKT activation was inhibited by allylglycine (a specific GAD67 inhibitor) in MIN6 cells. Moreover, giving A1–7 and GABA could significantly reduce beta-cell dedifferentiation and improved glucose metabolism during metabolic stress in vivo and in vitro. In conclusion, our study reveals that the ACE2/A1–7/MAS axis improves beta-cell function through regulating GAD67/GABA signal in beta cells and that up-regulating the ACE2/A1–7/MAS axis and GABA signals delays the development of obesity-induced diabetes.

Supplementary Materials

    • Supplementary Figure 1. The expression of GABA receptors in islets of mouse models. (A) Experimental schedule for the metabolic stress models. (B) Real-time PCR analysis of Ace2 and GABA related genes in the pancreatic specimens. (C) IF staining of GBR positive beta cells in islets. Scale bars = 20 &#x03BC;m. (D) Experimental schedule for ACE2KO mice models. (E) Plasma A-7 levels in WT and ACE2KO models. (F) Real-time PCR analysis of Gad67 and GABA related receptors in the mouse pancreas of ACE2KO mice models. Data are mean &#x00B1; SEM (n=5-7 mice/group). One-way or two-way ANOVA was used for statistical analysis. *P < 0.05, **P < 0.01 and ****P < 0.0001.
    • Supplementary Figure 2. Effects of A1-7 and GABA on body weight and beta-cell proliferation. (A) Changes in body weight of each group. (B-C) Representative images of Ki67 positive beta cells (B) and ratio of ki67 positive beta cells (C). (D) TUNEL staining of pancreases. Scale bars = 50 &#x03BC;m. (E-F) Representative western blots of p-AKT expression in liver and eWAT specimens. Data are mean &#x00B1; SEM (n=5-8). One-way ANOVA was used for statistical analysis. *P < 0.05 vs SD group and #P < 0.05 vs HFD group. (eWAT, epididymal white adipose tissues)

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 500 500 188
Full Text Views 28 28 14
PDF Downloads 21 21 11
  • Ackermann AM, Moss NG & Kaestner KH 2018 GABA and aartesunate do not induce pancreatic α-to-β cell ttransdifferentiation in vivo. Cell Metabolism 28 787792.e3. (https://doi.org/10.1016/j.cmet.2018.07.002)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ben-Othman N, Vieira A, Courtney M, Record F, Gjernes E, Avolio F, Hadzic B, Druelle N, Napolitano T, Navarro-Sanz S, 2017 Long-term GABA administration induces alpha cell-mediated beta-like cell neogenesis. Cell 168 7385.e11. (https://doi.org/10.1016/j.cell.2016.11.002)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bensellam M, Jonas JC & Laybutt DR 2018 Mechanisms of beta-cell dedifferentiation in diabetes: recent findings and future research directions. Journal of Endocrinology 236 R109R143. (https://doi.org/10.1530/JOE-17-0516)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindom SM, Hans CP, Xia H, Boulares AH & Lazartigues E 2010 Angiotensin I-converting enzyme type 2 (ACE2) gene therapy improves glycemic control in diabetic mice. Diabetes 59 25402548. (https://doi.org/10.2337/db09-0782)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brar GS, Barrow BM, Watson M, Griesbach R, Choung E, Welch A, Ruzsicska B, Raleigh DP & Zraika S 2017 Neprilysin is required for angiotensin-(1-7)’s ability to enhance insulin secretion via its proteolytic activity to generate angiotensin-(1-2). Diabetes 66 22012212. (https://doi.org/10.2337/db16-1318)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng J, Deng R, Zhang P, Wu C, Wu K, Shi L, Liu X, Bai J, Deng M, Shuai X, 2015 miR-219-5p plays a tumor suppressive role in colon cancer by targeting oncogene Sall4. Oncology Reports 34 19231932. (https://doi.org/10.3892/or.2015.4168)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efrat S 2019 Concise review: beta-cell dedifferentiation in type 2 diabetes. Stem Cells 9999 12671272. (https://doi.org/10.1002/stem.3059)

    • Search Google Scholar
    • Export Citation
  • Feng AL, Xiang YY, Gui L, Kaltsidis G, Feng Q & Lu WY 2017 Paracrine GABA and insulin regulate pancreatic alpha cell proliferation in a mouse model of type 1 diabetes. Diabetologia 60 10331042. (https://doi.org/10.1007/s00125-017-4239-x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng MM, Xiang YY, Wang S & Lu WY 2013 An autocrine gamma-aminobutyric acid signaling system exists in pancreatic beta-cell progenitors of fetal and postnatal mice. International Journal of Physiology, Pathophysiology & Pharmacology 5 91101.

    • Search Google Scholar
    • Export Citation
  • Gromada J, Chabosseau P & Rutter GA 2018 The alpha-cell in diabetes mellitus. Nature Reviews: Endocrinology 14 694704. (https://doi.org/10.1038/s41574-018-0097-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Habener JF & Stanojevic V 2013 Alpha cells come of age. Trends in Endocrinology & Metabolism 24 153163. (https://doi.org/10.1016/j.tem.2012.10.009)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu C & Jia W 2018 Diabetes in China: epidemiology and genetic risk factors and their clinical utility in personalized medication. Diabetes 67 311. (https://doi.org/10.2337/dbi17-0013)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang C, Yuan L & Cao S 2015 Endogenous GLP-1 as a key self-defense molecule against lipotoxicity in pancreatic islets. International Journal of Molecular Medicine 36 173185. (https://doi.org/10.3892/ijmm.2015.2207)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kehlenbrink S, Smith J, Ansbro É, Fuhr DC, Cheung A, Ratnayake R, Boulle P, Jobanputra K, Perel P & Roberts B 2019 The burden of diabetes and use of diabetes care in humanitarian crises in low-income and middle-income countries. Lancet Diabetes & Endocrinology 8 110. (https://doi.org/10.1016/S2213-8587(19)30082-8)

    • Search Google Scholar
    • Export Citation
  • Legat L, Smolders I & Dupont AG 2018 GABAergic signaling mediates central cardiovascular angiotensin II type 2 receptor effects. Trends in Endocrinology & Metabolism 29 605606. (https://doi.org/10.1016/j.tem.2018.04.005)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li J, Casteels T, Frogne T, Ingvorsen C, Honoré C, Courtney M, Huber KVM, Schmitner N, Kimmel RA, Romanov RA, 2017 Artemisinins target GABA A receptor signaling and impair α cell identity. Cell 168 86100.e15. (https://doi.org/10.1016/j.cell.2016.11.010)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu J, Yang K, Yang J, Xiao W, Le Y, Yu F, Gu L, Lang S, Tian Q, Jin T, 2019 Liver-derived fibroblast growth factor 21 mediates effects of glucagon-like peptide-1 in attenuating hepatic glucose output. EBioMedicine 41 7384. (https://doi.org/10.1016/j.ebiom.2019.02.037)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu W, Son DO, Lau HK, Zhou Y, Prud’homme GJ, Jin T & Wang Q 2017 Combined oral administration of GABA and DPP-4 inhibitor prevents beta cell damage and promotes beta cell regeneration in mice. Frontiers in Pharmacology 8 362371. (https://doi.org/10.3389/fphar.2017.00362)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu Y, Deng J & Fan D 2019 Ginsenoside Rk3 ameliorates high-fat-diet/streptozocin induced type 2 diabetes mellitus in mice via the AMPK/Akt signaling pathway. Food & Function 10 25382551. (https://doi.org/10.1039/c9fo00095j)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lu J, Liu KC, Schulz N, Karampelias C, Charbord J, Hilding A, Rautio L, Bertolino P, Ostenson CG, Brismar K, 2016 IGFBP1 increases beta-cell regeneration by promoting alpha- to beta-cell transdifferentiation. EMBO Journal 35 20262044. (https://doi.org/10.15252/embj.201592903)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mita Y, Nakayama K, Inari S, Nishito Y, Yoshioka Y, Sakai N, Sotani K, Nagamura T, Kuzuhara Y, Inagaki K, 2017 Selenoprotein P-neutralizing antibodies improve insulin secretion and glucose sensitivity in type 2 diabetes mouse models. Nature Communications 8 15681584. (https://doi.org/10.1038/s41467-017-01863-z)

    • Search Google Scholar
    • Export Citation
  • Prud’Homme GJ, Glinka Y, Kurt M, Liu W & Wang Q 2017 The anti-aging protein Klotho is induced by GABA therapy and exerts protective and stimulatory effects on pancreatic beta cells. Biochemical and Biophysical Research Communications 493 15421547. (https://doi.org/10.1016/j.bbrc.2017.10.029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Purwana I, Zheng J, Li X, Deurloo M, Son DO, Zhang Z, Liang C, Shen E, Tadkase A, Feng ZP, 2014 GABA promotes human beta-cell proliferation and modulates glucose homeostasis. Diabetes 63 41974205. (https://doi.org/10.2337/db14-0153)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ramracheya RD, McCulloch LJ, Clark A, Wiggins D, Johannessen H, Olsen MK, Cai X, Zhao CM, Chen D & Rorsman P 2016 PYY-dependent restoration of impaired insulin and glucagon secretion in type 2 diabetes following roux-en-Y gastric bypass surgery. Cell Reports 15 944950. (https://doi.org/10.1016/j.celrep.2016.03.091)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sánchez-Huertas C & Rico B 2011 CREB-dependent regulation of GAD65 transcription by BDNF/TrkB in cortical interneurons. Cerebral Cortex 21 777– 788. (https://doi.org/10.1093/cercor/bhq150)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharp J & Vermette P 2017 An in-situ glucose-stimulated insulin secretion assay under perfusion bioreactor conditions. Biotechnology Progress 33 454462. (https://doi.org/10.1002/btpr.2407)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shi TT, Yang FY, Liu C, Cao X, Lu J, Zhang XL, Yuan MX, Chen C & Yang JK 2018 Angiotensin-converting enzyme 2 regulates mitochondrial function in pancreatic β-cells. Biochemical and Biophysical Research Communications 495 860866. (https://doi.org/10.1016/j.bbrc.2017.11.055)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Soltani N, Qiu H, Aleksic M, Glinka Y, Zhao F, Liu R, Li Y, Zhang N, Chakrabarti R, Ng T, 2011 GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. PNAS 108 1169211697. (https://doi.org/10.1073/pnas.1102715108)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Talchai C, Xuan S, Lin HV, Sussel L & Accili D 2012 Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell 150 12231234. (https://doi.org/10.1016/j.cell.2012.07.029)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taneera J, Jin Z, Jin Y, Muhammed SJ, Zhang E, Lang S, Salehi A, Korsgren O, Renström E, Groop L, 2012 γ-Aminobutyric acid (GABA) signalling in human pancreatic islets is altered in type 2 diabetes. Diabetologia 55 19851994. (https://doi.org/10.1007/s00125-012-2548-7)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • van der Meulen T, Lee S, Noordeloos E, Donaldson CJ, Adams MW, Noguchi GM, Mawla AM & Huising MO 2018 Artemether does not turn α cells into β cells. Cell Metabolism 27 218225.e4. (https://doi.org/10.1016/j.cmet.2017.10.002)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wan Y, Wang Q & Prud’homme GJ 2015 GABAergic system in the endocrine pancreas: a new target for diabetes treatment. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 8 7987. (https://doi.org/10.2147/DMSO.S50642)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang C, Mao R, Van De Casteele M, Pipeleers D & Ling Z 2007 Glucagon-like peptide-1 stimulates GABA formation by pancreatic β-cells at the level of glutamate decarboxylase. American Journal of Physiology: Endocrinology and Metabolism 292 E1201E1206. (https://doi.org/10.1152/ajpendo.00459.2006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang L, de Kloet AD, Pati D, Hiller H, Smith JA, Pioquinto DJ, Ludin JA, Oh SP, Katovich MJ, Frazier CJ, 2016 Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors. Neuropharmacology 105 114123. (https://doi.org/10.1016/j.neuropharm.2015.12.026)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang Q, Ren L, Wan Y, & Prud’Homme GJ2019 GABAergic regulation of pancreatic islet cells: physiology and antidiabetic effects. Journal of Cellular Physiology [epub]. (https://doi.org/10.1002/jcp.28214)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang W, Wu RD, Chen P, Xu XJ, Shi XZ, Huang LH, Shao ZL & Guo W 2019 Liraglutide combined with human umbilical cord mesenchymal stem cell transplantation inhibits beta-cell apoptosis via mediating the ASK1/JNK/BAX pathway in rats with type 2 diabetes. Diabetes/Metabolism Research & Reviews 36 e3212. (https://doi.org/10.1002/dmrr.3212)

    • Search Google Scholar
    • Export Citation
  • Wang Z, York NW, Nichols CG & MS 2014 Pancreatic beta cell dedifferentiation in diabetes and redifferentiation following insulin therapy. Cell Metabolism 19 872882. (https://doi.org/10.1016/j.cmet.2014.03.010)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weir GC & Bonner-Weir S 2017 GABA signaling stimulates β cell regeneration in diabetic mice. Cell 168 79. (https://doi.org/10.1016/j.cell.2016.12.006)

  • Xuan X, Gao F, Ma X, Huang C, Wang Y, Deng H, Wang S, Li W & Yuan L 2018 Activation of ACE2/angiotensin (1–7) attenuates pancreatic β cell dedifferentiation in a high-fat-diet mouse model. Metabolism: Clinical and Experimental 81 8396. (https://doi.org/10.1016/j.metabol.2017.12.003)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo DY, Kim W, Yoo KY, Nam SM, Chung JY, Yoon YS, Won MH & Hwang IK 2012 Effects of pyridoxine on a high-fat diet-induced reduction of cell proliferation and neuroblast differentiation depend on cyclic adenosine monophosphate response element binding protein in the mouse dentate gyrus. Journal of Neuroscience Research 90 16151625 (https://doi.org/10.1002/jnr.23035)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yoshihara E, Fujimoto S, Inagaki N, Okawa K, Masaki S, Yodoi J & Masutani H 2010 Disruption of TBP-2 ameliorates insulin sensitivity and secretion without affecting obesity. Nature Communications 1 127138. (https://doi.org/10.1038/ncomms1127)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yuan L, Lu CL, Wang Y, Li Y & Li XY 2014 Ang (1-7) protects islet endothelial cells from palmitate-induced apoptosis by AKT, eNOS, p38 MAPK, and JNK pathways. Journal of Diabetes Research 2014 110. (https://doi.org/10.1155/2014/391476)

    • Search Google Scholar
    • Export Citation
  • Yuan L, Wang Y, Lu C & Li X 2013 Angiotensin-converting enzyme 2 deficiency aggravates glucose intolerance via impairment of islet microvascular density in mice with high-fat diet. Journal of Diabetes Research 2013 18. (https://doi.org/10.1155/2013/405284)

    • Search Google Scholar
    • Export Citation
  • Zhou M, Wang H, Zeng X, Yin P, Zhu J, Chen W, Li X, Wang L, Wang L, Liu Y, 2019 Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2394 114. (doi:10.1016/S0140-6736(19)30427-1)

    • Search Google Scholar
    • Export Citation