Oxidative remote induction of type 3 deiodinase impacts nonthyroidal illness syndrome

in Journal of Endocrinology
View More View Less
  • 1 Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil

Correspondence should be addressed to S M Wajner: simonewajner@gmail.com

*(T E Lehnen and R Marschner contributed equally to this work)

Restricted access

Imbalances in redox status modulate type 3 deiodinase induction in nonthyroidal illness syndrome. However, the underlying mechanisms that lead to D3 dysfunction under redox imbalance are still poorly understood. Here we evaluated D3 induction, redox homeostasis, and their interrelationships in the liver, muscle, and brain in an animal model of NTIS. Male Wistar rats were subjected to left anterior coronary artery occlusion and randomly separated into two groups and treated or not (placebo) with the antioxidant N-acetylcysteine. Sham animals were used as controls. Animals were killed 10 or 28 days post-MI induction and tissues were immediately frozen for biochemical analysis. D3 activity, protein oxidation and antioxidant defenses were measured in liver, muscle, and brain. Compared to those of the sham group, the levels of D3 expression and activity were increased in the liver (P = 0.002), muscle (P = 0.03) and brain (P = 0.01) in the placebo group. All tissues from the placebo animals showed increased carbonyl groups (P < 0.001) and diminished sulfhydryl levels (P < 0.001). Glutathione levels were decreased and glutathione disulfide levels were augmented in all examined tissues. The liver and muscle showed augmented levels of glutathione peroxidase, glutathione reductase and thioredoxin reductase activity (P = 0.001). NAC prevented all the alterations described previously. D3 dysfunction in all tissues correlates with post-MI-induced protein oxidative damage and altered antioxidant defenses. NAC treatment prevents D3 dysfunction, indicating that reversible redox-related remote D3 activation explains, at least in part, the thyroid hormone derangements of NTIS.

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 378 378 238
Full Text Views 59 59 47
PDF Downloads 22 22 10
  • Aksenov MY & Markesbery WR 2001 Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neuroscience Letters 302 141145. (https://doi.org/10.1016/s0304-3940(01)01636-6)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Alevizaki M, Synetou M, Xynos K, Pappa T & Vemmos KN 2007 Low triiodothyronine: a strong predictor of outcome in acute stroke patients. European Journal of Clinical Investigation 37 651657. (https://doi.org/10.1111/j.1365-2362.2007.01839.x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baqui M, Botero D, Gereben B, Curcio C, Harney JW, Salvatore D, Sorimachi K, Larsen PR & Bianco AC 2003 Human type 3 iodothyronine selenodeiodinase is located in the plasma membrane and undergoes rapid internalization to endosomes. Journal of Biological Chemistry 278 12061211. (https://doi.org/10.1074/jbc.M210266200)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechtel TJ & Weerapana E 2017 From structure to redox: the diverse functional roles of disulfides and implications in disease. Proteomics 17 1–27. (https://doi.org/10.1002/pmic.201600391)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Callebaut I, Curcio-Morelli C, Mornon JP, Gereben B, Buettner C, Huang S, Castro B, Fonseca TL, Harney JW & Larsen PR 2003 The iodothyronine selenodeiodinases are thioredoxin-fold family proteins containing a glycoside hydrolase clan GH-A-like structure. Journal of Biological Chemistry 278 3688736896. (https://doi.org/10.1074/jbc.M305725200)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castroneves LA, Jugo RH, Maynard MA, Lee JS, Wassner AJ, Dorfman D, Bronson RT, Ukomadu C, Agoston AT & Ding L, 2014 Mice with hepatocyte-specific deficiency of type 3 deiodinase have intact liver regeneration and accelerated recovery from nonthyroidal illness after toxin-induced hepatonecrosis. Endocrinology 155 40614068. (https://doi.org/10.1210/en.2013-2028)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Couvertier SM, Zhou Y & Weerapana E 2014 Chemical-proteomic strategies to investigate cysteine posttranslational modifications. Biochimica & Biophysica Acta 1844 23152330. (https://doi.org/10.1016/j.bbapap.2014.09.024)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deponte M 2013 Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochimica & Biophysica Acta 1830 32173266. (https://doi.org/10.1016/j.bbagen.2012.09.018)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dugas JC, Ibrahim A & Barres BA 2012 The T3-induced gene KLF9 regulates oligodendrocyte differentiation and myelin regeneration. Molecular & Cellular Neurosciences 50 4557. (https://doi.org/10.1016/j.mcn.2012.03.007)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami A & Rosenberg IN 1985 Purification and characterization of a cytosolic protein enhancing GSH-dependent microsomal iodothyronine 5′-monodeiodination. Journal of Biological Chemistry 260 60126019.

    • Search Google Scholar
    • Export Citation
  • Huang SA, Mulcahey MA, Crescenzi A, Chung M, Kim BW, Barnes C, Kuijt W, Turano H, Harney J & Larsen PR 2005 Transforming growth factor-beta promotes inactivation of extracellular thyroid hormones via transcriptional stimulation of type 3 iodothyronine deiodinase. Molecular Endocrinology 19 31263136. (https://doi.org/10.1210/me.2005-0173)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iervasi G, Pingitore A, Landi P, Raciti M, Ripoli A, Scarlattini M, L'abbate A & Donato L 2003 Low-T3 syndrome: a strong prognostic predictor of death in patients with heart disease. Circulation 107 708713. (https://doi.org/10.1161/01.cir.0000048124.64204.3f)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilkenny C, Browne WJ, Cuthill IC, Emerson M & Altman DG 2010 Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. Journal of Pharmacology & Pharmacotherapeutics 1 9499. (https://doi.org/10.4103/0976-500X.72351)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kuiper GG, Klootwijk W & Visser TJ 2002 Substitution of cysteine for a conserved alanine residue in the catalytic center of type II iodothyronine deiodinase alters interaction with reducing cofactor. Endocrinology 143 11901198. (https://doi.org/10.1210/endo.143.4.8738)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lamirand A, Pallud-Mothre S, Ramauge M, Pierre M & Courtin F 2008 Oxidative stress regulates type 3 deiodinase and type 2 deiodinase in cultured rat astrocytes. Endocrinology 149 37133721. (https://doi.org/10.1210/en.2007-1462)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lehnen TE, Santos MV, Lima A, Maia AL & Wajner SM 2017 N-acetylcysteine prevents low T3 syndrome and attenuates cardiac dysfunction in a male rat model of myocardial infarction. Endocrinology 158 15021510. (https://doi.org/10.1210/en.2016-1586)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu J & Holmgren A 2009 Selenoproteins. Journal of Biological Chemistry 284 723727. (https://doi.org/10.1074/jbc.R800045200)

  • Mailloux RJ & Willmore WG 2014 S-glutathionylation reactions in mitochondrial function and disease. Frontiers in Cell & Developmental Biology 2 68. (https://doi.org/10.3389/fcell.2014.00068)

    • Search Google Scholar
    • Export Citation
  • Moriarty-Craige SE & Jones DP 2004 Extracellular thiols and thiol/disulfide redox in metabolism. Annual Review of Nutrition 24 481509. (https://doi.org/10.1146/annurev.nutr.24.012003.132208)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • NIH 1996 Guide for the Care and Use of Laboratory Animals. Washingtion, DC, USA: National Academy Press.

  • Olivares EL, Marassi MP, Fortunato RS, Da Silva AC, Costa-E-Sousa RH, Araujo IG, Mattos EC, Masuda MO, Mulcahey MA, Huang SA, 2007 Thyroid function disturbance and type 3 iodothyronine deiodinase induction after myocardial infarction in rats a time course study. Endocrinology 148 47864792. (https://doi.org/10.1210/en.2007-0043)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oliveira PVS & Laurindo FRM 2018 Implications of plasma thiol redox in disease. Clinical Science 132 12571280. (https://doi.org/10.1042/CS20180157)

  • Peeters RP, Wouters PJ, Kaptein E, Van Toor H, Visser TJ & Van Den Berghe G 2003 Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients. Journal of Clinical Endocrinology & Metabolism 88 32023211. (https://doi.org/10.1210/jc.2002-022013)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peeters RP, Wouters PJ, Van Toor H, Kaptein E, Visser TJ & Van Den Berghe G 2005 Serum 3,3′,5′-triiodothyronine (rT3) and 3,5,3′-triiodothyronine/rT3 are prognostic markers in critically ill patients and are associated with postmortem tissue deiodinase activities. Journal of Clinical Endocrinology & Metabolism 90 45594565. (https://doi.org/10.1210/jc.2005-0535)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA & Braunwald E 1979 Myocardial infarct size and ventricular function in rats. Circulation Research 44 503512. (https://doi.org/10.1161/01.res.44.4.503)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pol CJ, Muller A, Zuidwijk MJ, Van Deel ED, Kaptein E, Saba A, Marchini M, Zucchi R, Visser TJ & Paulus WJ, 2011 Left-ventricular remodeling after myocardial infarction is associated with a cardiomyocyte-specific hypothyroid condition. Endocrinology 152 669679. (https://doi.org/10.1210/en.2010-0431)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ramadan W, Marsili A, Larsen PR, Zavacki AM & Silva JE 2011 Type-2 iodothyronine deiodinase in skeletal muscle of C57BL/6 mice. II. Evidence for a role of D2 in the hypermetabolism of thyroid hormone receptor alpha-deficient mice. Endocrinology 152 30933102. (https://doi.org/10.1210/en.2011-0139)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rhee SG 2016 Overview on peroxiredoxin. Molecules & Cells 39 15. (https://doi.org/10.14348/molcells.2016.2368)

  • Rodriguez-Perez A, Palos-Paz F, Kaptein E, Visser TJ, Dominguez-Gerpe L, Alvarez-Escudero J & Lado-Abeal J 2008 Identification of molecular mechanisms related to nonthyroidal illness syndrome in skeletal muscle and adipose tissue from patients with septic shock. Clinical Endocrinology 68 821827. (https://doi.org/10.1111/j.1365-2265.2007.03102.x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sawada K, Hummel BC & Walfish PG 1986 Properties of cytosolic components activating rat hepatic 5′-deiodination in the presence of NADPH. Biochemical Journal 234 391398. (https://doi.org/10.1042/bj2340391)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schweizer U, Schlicker C, Braun D, Kohrle J & Steegborn C 2014 Crystal structure of mammalian selenocysteine-dependent iodothyronine deiodinase suggests a peroxiredoxin-like catalytic mechanism. PNAS 111 1052610531. (https://doi.org/10.1073/pnas.1323873111)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sinha RA, Singh BK & Yen PM 2018 Direct effects of thyroid hormones on hepatic lipid metabolism. Nature Reviews. Endocrinology 14 259269. (https://doi.org/10.1038/nrendo.2018.10)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Teare JP, Punchard NA, Powell JJ, Lumb PJ, Mitchell WD & Thompson RP 1993 Automated spectrophotometric method for determining oxidized and reduced glutathione in liver. Clinical Chemistry 39 686689. (https://doi.org/10.1093/clinchem/39.4.686)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vidart J, Wajner SM, Leite RS, Manica A, Schaan BD, Larsen PR & Maia AL 2014 N-acetylcysteine administration prevents nonthyroidal illness syndrome in patients with acute myocardial infarction: a randomized clinical trial. Journal of Clinical Endocrinology & Metabolism 99 45374545. (https://doi.org/10.1210/jc.2014-2192)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wajner SM, Goemann IM, Bueno AL, Larsen PR & Maia AL 2011 IL-6 promotes nonthyroidal illness syndrome by blocking thyroxine activation while promoting thyroid hormone inactivation in human cells. Journal of Clinical Investigation 121 18341845. (https://doi.org/10.1172/JCI44678)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wajner SM & Maia AL 2012 New insights toward the acute non-thyroidal illness syndrome. Frontiers in Endocrinology 3 8. (https://doi.org/10.3389/fendo.2012.00008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wajner SM, Rohenkohl HC, Serrano T & Maia AL 2015 Sodium selenite supplementation does not fully restore oxidative stress-induced deiodinase dysfunction: implications for the nonthyroidal illness syndrome. Redox Biology 6 436445. (https://doi.org/10.1016/j.redox.2015.09.002)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yamamoto M, Yang G, Hong C, Liu J, Holle E, Yu X, Wagner T, Vatner SF & Sadoshima J 2003 Inhibition of endogenous thioredoxin in the heart increases oxidative stress and cardiac hypertrophy. Journal of Clinical Investigation 112 13951406. (https://doi.org/10.1172/JCI17700)

    • Crossref
    • Search Google Scholar
    • Export Citation