Adiponectin is secreted via caveolin 1-dependent mechanisms in white adipocytes

in Journal of Endocrinology
View More View Less
  • 1 Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
  • 2 Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
  • 3 Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden

Correspondence should be addressed to C S Olofsson: charlotta.olofsson@gu.se
Restricted access

Here we have investigated the role of the protein caveolin 1 (Cav1) and caveolae in the secretion of the white adipocyte hormone adiponectin. Using mouse primary subcutaneous adipocytes genetically depleted of Cav1, we show that the adiponectin secretion, stimulated either adrenergically or by insulin, is abrogated while basal (unstimulated) release of adiponectin is elevated. Adiponectin secretion is similarly affected in wildtype mouse and human adipocytes where the caveolae structure was chemically disrupted. The altered ex vivo secretion in adipocytes isolated from Cav1 null mice is accompanied by lowered serum levels of the high-molecular weight (HMW) form of adiponectin, whereas the total concentration of adiponectin is unaltered. Interestingly, levels of HMW adiponectin are maintained in adipose tissue from Cav1-depleted mice, signifying that a secretory defect is present. The gene expression of key regulatory proteins known to be involved in cAMP/adrenergically triggered adiponectin exocytosis (the beta-3-adrenergic receptor and exchange protein directly activated by cAMP) remains intact in Cav1 null adipocytes. Microscopy and fractionation studies indicate that adiponectin vesicles do not co-localise with Cav1 but that some vesicles are associated with a specific fraction of caveolae. Our studies propose that Cav1 has an important role in secretion of HMW adiponectin, even though adiponectin-containing vesicles are not obviously associated with this protein. We suggest that Cav1, and/or the caveolae domain, is essential for the organisation of signalling pathways involved in the regulation of HMW adiponectin exocytosis, a function that is disrupted in Cav1/caveolae-depleted adipocytes.

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 920 920 120
Full Text Views 92 92 24
PDF Downloads 49 49 14
  • Aboulaich N, Ortegren U, Vener AV & Stralfors P 2006 Association and insulin regulated translocation of hormone-sensitive lipase with PTRF. Biochemical and Biophysical Research Communications 350 657661. (https://doi.org/10.1016/j.bbrc.2006.09.094)

    • Search Google Scholar
    • Export Citation
  • Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, 1999 Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochemical and Biophysical Research Communications 257 7983. (https://doi.org/10.1006/bbrc.1999.0255)

    • Search Google Scholar
    • Export Citation
  • Asterholm IW, Mundy DI, Weng J, Anderson RG & Scherer PE 2012 Altered mitochondrial function and metabolic inflexibility associated with loss of caveolin-1. Cell Metabolism 15 171185. (https://doi.org/10.1016/j.cmet.2012.01.004)

    • Search Google Scholar
    • Export Citation
  • Barnett-Norris J, Lynch D & Reggio PH 2005 Lipids, lipid rafts and caveolae: their importance for GPCR signaling and their centrality to the endocannabinoid system. Life Sciences 77 16251639. (https://doi.org/10.1016/j.lfs.2005.05.040)

    • Search Google Scholar
    • Export Citation
  • Basu R, Pajvani UB, Rizza RA & Scherer PE 2007 Selective downregulation of the high molecular weight form of adiponectin in hyperinsulinemia and in type 2 diabetes: differential regulation from nondiabetic subjects. Diabetes 56 21742177. (https://doi.org/10.2337/db07-0185)

    • Search Google Scholar
    • Export Citation
  • Blumer RM, van Roomen CP, Meijer AJ, Houben-Weerts JH, Sauerwein HP & Dubbelhuis PF 2008 Regulation of adiponectin secretion by insulin and amino acids in 3T3-L1 adipocytes. Metabolism: Clinical and Experimental 57 16551662. (https://doi.org/10.1016/j.metabol.2008.07.020)

    • Search Google Scholar
    • Export Citation
  • Bogan JS & Lodish HF 1999 Two compartments for insulin-stimulated exocytosis in 3T3-L1 adipocytes defined by endogenous ACRP30 and GLUT4. Journal of Cell Biology 146 609620. (https://doi.org/10.1083/jcb.146.3.609)

    • Search Google Scholar
    • Export Citation
  • Brannmark C, Palmer R, Glad ST, Cedersund G & Stralfors P 2010 Mass and information feedbacks through receptor endocytosis govern insulin signaling as revealed using a parameter-free modeling framework. Journal of Biological Chemistry 285 2017120179. (https://doi.org/10.1074/jbc.M110.106849)

    • Search Google Scholar
    • Export Citation
  • Brannmark C, Lovfors W, Komai AM, Axelsson T, El Hachmane MF, Musovic S, Paul A, Nyman E & Olofsson CS 2017 Mathematical modeling of white adipocyte exocytosis predicts adiponectin secretion and quantifies the rate of vesicle exo- and endocytosis. Journal of Biological Chemistry 292 2003220043. (https://doi.org/10.1074/jbc.M117.801225)

    • Search Google Scholar
    • Export Citation
  • Brochu-Gaudreau K, Rehfeldt C, Blouin R, Bordignon V, Murphy BD & Palin MF 2010 Adiponectin action from head to toe. Endocrine 37 1132. (https://doi.org/10.1007/s12020-009-9278-8)

    • Search Google Scholar
    • Export Citation
  • Burgoyne RD & Morgan A 2003 Secretory granule exocytosis. Physiological Reviews 83 581632. (https://doi.org/10.1152/physrev.00031.2002)

  • Cohen AW, Razani B, Schubert W, Williams TM, Wang XB, Iyengar P, Brasaemle DL, Scherer PE & Lisanti MP 2004 Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation. Diabetes 53 12611270. (https://doi.org/10.2337/diabetes.53.5.1261)

    • Search Google Scholar
    • Export Citation
  • Cong L, Chen K, Li J, Gao P, Li Q, Mi S, Wu X & Zhao AZ 2007 Regulation of adiponectin and leptin secretion and expression by insulin through a PI3K-PDE3B dependent mechanism in rat primary adipocytes. Biochemical Journal 403 519525. (https://doi.org/10.1042/BJ20061478)

    • Search Google Scholar
    • Export Citation
  • El Hachmane MF, Komai AM & Olofsson CS 2015 Cooling reduces cAMP-stimulated exocytosis and adiponectin secretion at a Ca2+-dependent step in 3T3-L1 adipocytes. PLoS ONE 10 e0119530. (https://doi.org/10.1371/journal.pone.0119530)

    • Search Google Scholar
    • Export Citation
  • Fagerholm S, Ortegren U, Karlsson M, Ruishalme I & Stralfors P 2009 Rapid insulin-dependent endocytosis of the insulin receptor by caveolae in primary adipocytes. PLoS ONE 4 e5985. (https://doi.org/10.1371/journal.pone.0005985)

    • Search Google Scholar
    • Export Citation
  • Foti M, Porcheron G, Fournier M, Maeder C & Carpentier JL 2007 The neck of caveolae is a distinct plasma membrane subdomain that concentrates insulin receptors in 3T3-L1 adipocytes. PNAS 104 12421247. (https://doi.org/10.1073/pnas.0610523104)

    • Search Google Scholar
    • Export Citation
  • Galitzky J, Langin D, Verwaerde P, Montastruc JL, Lafontan M & Berlan M 1997 Lipolytic effects of conventional beta 3-adrenoceptor agonists and of CGP 12,177 in rat and human fat cells: preliminary pharmacological evidence for a putative beta 4-adrenoceptor. British Journal of Pharmacology 122 12441250. (https://doi.org/10.1038/sj.bjp.0701523)

    • Search Google Scholar
    • Export Citation
  • Gustavsson J, Parpal S, Karlsson M, Ramsing C, Thorn H, Borg M, Lindroth M, Peterson KH, Magnusson KE & Stralfors P 1999 Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB Journal 13 19611971. (https://doi.org/10.1096/fasebj.13.14.1961)

    • Search Google Scholar
    • Export Citation
  • Hamilton MP, Gore MO, Ayers CR, Xinyu W, McGuire DK & Scherer PE 2011 Adiponectin and cardiovascular risk profile in patients with type 2 diabetes mellitus: parameters associated with adiponectin complex distribution. Diabetes and Vascular Disease Research 8 190194. (https://doi.org/10.1177/1479164111407784)

    • Search Google Scholar
    • Export Citation
  • Hara K, Horikoshi M, Yamauchi T, Yago H, Miyazaki O, Ebinuma H, Imai Y, Nagai R & Kadowaki T 2006 Measurement of the high-molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome. Diabetes Care 29 13571362. (https://doi.org/10.2337/dc05-1801)

    • Search Google Scholar
    • Export Citation
  • Head BP & Insel PA 2007 Do caveolins regulate cells by actions outside of caveolae? Trends in Cell Biology 17 5157. (https://doi.org/10.1016/j.tcb.2006.11.008)

    • Search Google Scholar
    • Export Citation
  • Insel PA, Head BP, Patel HH, Roth DM, Bundey RA & Swaney JS 2005 Compartmentation of G-protein-coupled receptors and their signalling components in lipid rafts and caveolae. Biochemical Society Transactions 33 11311134. (https://doi.org/10.1042/BST20051131)

    • Search Google Scholar
    • Export Citation
  • Jonsson C, Castor Batista AP, Kjolhede P & Stralfors P 2019 Insulin and beta-adrenergic receptors mediate lipolytic and anti-lipolytic signalling that is not altered by type 2 diabetes in human adipocytes. Biochemical Journal 476 28832908. (https://doi.org/10.1042/BCJ20190594)

    • Search Google Scholar
    • Export Citation
  • Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K & Tobe K 2006 Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. Journal of Clinical Investigation 116 17841792. (https://doi.org/10.1172/JCI29126)

    • Search Google Scholar
    • Export Citation
  • Kaisanlahti A & Glumoff T 2019 Browning of white fat: agents and implications for beige adipose tissue to type 2 diabetes. Journal of Physiology and Biochemistry 75 110. (https://doi.org/10.1007/s13105-018-0658-5)

    • Search Google Scholar
    • Export Citation
  • Karlsson M, Thorn H, Danielsson A, Stenkula KG, Ost A, Gustavsson J, Nystrom FH & Stralfors P 2004 Colocalization of insulin receptor and insulin receptor substrate-1 to caveolae in primary human adipocytes. Cholesterol depletion blocks insulin signalling for metabolic and mitogenic control. European Journal of Biochemistry 271 24712479. (https://doi.org/10.1111/j.1432-1033.2004.04177.x)

    • Search Google Scholar
    • Export Citation
  • Khan T, Hamilton MP, Mundy DI, Chua SC & Scherer PE 2009 Impact of simvastatin on adipose tissue: pleiotropic effects in vivo. Endocrinology 150 52625272. (https://doi.org/10.1210/en.2009-0603)

    • Search Google Scholar
    • Export Citation
  • Kim TJ, Sun J, Lu S, Zhang J & Wang Y 2014 The regulation of beta-adrenergic receptor-mediated PKA activation by substrate stiffness via microtubule dynamics in human MSCs. Biomaterials 35 83488356. (https://doi.org/10.1016/j.biomaterials.2014.06.018)

    • Search Google Scholar
    • Export Citation
  • Komai AM, Brannmark C, Musovic S & Olofsson CS 2014 PKA-independent cAMP stimulation of white adipocyte exocytosis and adipokine secretion: modulations by Ca2+ and ATP. Journal of Physiology 592 51695186. (https://doi.org/10.1113/jphysiol.2014.280388)

    • Search Google Scholar
    • Export Citation
  • Komai AM, Musovic S, Peris E, Alrifaiy A, El Hachmane MF, Johansson M, Wernstedt Asterholm I & Olofsson CS 2016 White adipocyte adiponectin exocytosis is stimulated via beta3-adrenergic signaling and activation of Epac1: catecholamine resistance in obesity and type 2 diabetes. Diabetes 65 33013313. (https://doi.org/10.2337/db15-1597)

    • Search Google Scholar
    • Export Citation
  • Lajoie P, Goetz JG, Dennis JW & Nabi IR 2009 Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. Journal of Cell Biology 185 381385. (https://doi.org/10.1083/jcb.200811059)

    • Search Google Scholar
    • Export Citation
  • Lang T 2007 SNARE proteins and 'membrane rafts'. Journal of Physiology 585 693698. (https://doi.org/10.1113/jphysiol.2007.134346)

  • Li S, Shin HJ, Ding EL & van Dam RM 2009 Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 302 179188. (https://doi.org/10.1001/jama.2009.976)

    • Search Google Scholar
    • Export Citation
  • Lihn AS, Bruun JM, He G, Pedersen SB, Jensen PF & Richelsen B 2004 Lower expression of adiponectin mRNA in visceral adipose tissue in lean and obese subjects. Molecular and Cellular Endocrinology 219 915. (https://doi.org/10.1016/j.mce.2004.03.002)

    • Search Google Scholar
    • Export Citation
  • Lim CY, Hong W & Han W 2015 Adiponectin is released via a unique regulated exocytosis pathway from a pre-formed vesicle pool on insulin stimulation. Biochemical Journal 471 381389. (https://doi.org/10.1042/BJ20150301)

    • Search Google Scholar
    • Export Citation
  • Lipardi C, Mora R, Colomer V, Paladino S, Nitsch L, Rodriguez-Boulan E & Zurzolo C 1998 Caveolin transfection results in caveolae formation but not apical sorting of glycosylphosphatidylinositol (GPI)-anchored proteins in epithelial cells. Journal of Cell Biology 140 617626. (https://doi.org/10.1083/jcb.140.3.617)

    • Search Google Scholar
    • Export Citation
  • Liu P, Rudick M & Anderson RG 2002 Multiple functions of caveolin-1. Journal of Biological Chemistry 277 4129541298. (https://doi.org/10.1074/jbc.R200020200)

    • Search Google Scholar
    • Export Citation
  • Mather KJ & Goldberg RB 2014 Clinical use of adiponectin as a marker of metabolic dysregulation. Best Practice and Research in Clinical Endocrinology and Metabolism 28 107117. (https://doi.org/10.1016/j.beem.2013.06.008)

    • Search Google Scholar
    • Export Citation
  • Meyer LK, Ciaraldi TP, Henry RR, Wittgrove AC & Phillips SA 2013 Adipose tissue depot and cell size dependency of adiponectin synthesis and secretion in human obesity. Adipocyte 2 217226. (https://doi.org/10.4161/adip.24953)

    • Search Google Scholar
    • Export Citation
  • Morvan J & Tooze SA 2008 Discovery and progress in our understanding of the regulated secretory pathway in neuroendocrine cells. Histochemistry and Cell Biology 129 243252. (https://doi.org/10.1007/s00418-008-0377-z)

    • Search Google Scholar
    • Export Citation
  • Nakamura A, Miyoshi H, Ukawa S, Nakamura K, Nakagawa T, Terauchi Y, Tamakoshi A & Atsumi T 2018 Serum adiponectin and insulin secretion: a direct or inverse association? Journal of Diabetes Investigation 9 11061109. (https://doi.org/10.1111/jdi.12821)

    • Search Google Scholar
    • Export Citation
  • Oka Y & Czech MP 1984 Photoaffinity labeling of insulin-sensitive hexose transporters in intact rat adipocytes. Direct evidence that latent transporters become exposed to the extracellular space in response to insulin. Journal of Biological Chemistry 259 81258133.

    • Search Google Scholar
    • Export Citation
  • Omar B, Zmuda-Trzebiatowska E, Manganiello V, Goransson O & Degerman E 2009 Regulation of AMP-activated protein kinase by cAMP in adipocytes: roles for phosphodiesterases, protein kinase B, protein kinase A, Epac and lipolysis. Cellular Signalling 21 760766. (https://doi.org/10.1016/j.cellsig.2009.01.015)

    • Search Google Scholar
    • Export Citation
  • Ortegren U, Karlsson M, Blazic N, Blomqvist M, Nystrom FH, Gustavsson J, Fredman P & Stralfors P 2004 Lipids and glycosphingolipids in caveolae and surrounding plasma membrane of primary rat adipocytes. European Journal of Biochemistry 271 20282036. (https://doi.org/10.1111/j.1432-1033.2004.04117.x)

    • Search Google Scholar
    • Export Citation
  • Ortegren U, Yin L, Ost A, Karlsson H, Nystrom FH & Stralfors P 2006 Separation and characterization of caveolae subclasses in the plasma membrane of primary adipocytes; segregation of specific proteins and functions. FEBS Journal 273 33813392. (https://doi.org/10.1111/j.1742-4658.2006.05345.x)

    • Search Google Scholar
    • Export Citation
  • Ost A, Ortegren U, Gustavsson J, Nystrom FH & Stralfors P 2005 Triacylglycerol is synthesized in a specific subclass of caveolae in primary adipocytes. Journal of Biological Chemistry 280 58. (https://doi.org/10.1074/jbc.C400429200)

    • Search Google Scholar
    • Export Citation
  • Ostrom RS & Insel PA 2004 The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. British Journal of Pharmacology 143 235245. (https://doi.org/10.1038/sj.bjp.0705930)

    • Search Google Scholar
    • Export Citation
  • Park JJ & Loh YP 2008 How peptide hormone vesicles are transported to the secretion site for exocytosis. Molecular Endocrinology 22 25832595. (https://doi.org/10.1210/me.2008-0209)

    • Search Google Scholar
    • Export Citation
  • Parpal S, Karlsson M, Thorn H & Stralfors P 2001 Cholesterol depletion disrupts caveolae and insulin receptor signaling for metabolic control via insulin receptor substrate-1, but not for mitogen-activated protein kinase control. Journal of Biological Chemistry 276 96709678. (https://doi.org/10.1074/jbc.M007454200)

    • Search Google Scholar
    • Export Citation
  • Pereira RI & Draznin B 2005 Inhibition of the phosphatidylinositol 3′-kinase signaling pathway leads to decreased insulin-stimulated adiponectin secretion from 3T3-L1 adipocytes. Metabolism: Clinical and Experimental 54 16361643. (https://doi.org/10.1016/j.metabol.2005.07.002)

    • Search Google Scholar
    • Export Citation
  • Razani B, Combs TP, Wang XB, Frank PG, Park DS, Russell RG, Li M, Tang B, Jelicks LA, Scherer PE, 2002 Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. Journal of Biological Chemistry 277 86358647. (https://doi.org/10.1074/jbc.M110970200)

    • Search Google Scholar
    • Export Citation
  • Rodiger M, Werno MW, Wilhelmi I, Baumeier C, Hesse D, Wettschureck N, Offermanns S, Song K, Krauss M & Schurmann A 2018 Adiponectin release and insulin receptor targeting share trans-Golgi-dependent endosomal trafficking routes. Molecular Metabolism 8 167179. (https://doi.org/10.1016/j.molmet.2017.11.011)

    • Search Google Scholar
    • Export Citation
  • Salaun C, James DJ & Chamberlain LH 2004 Lipid rafts and the regulation of exocytosis. Traffic 5 255264. (https://doi.org/10.1111/j.1600-0854.2004.0162.x)

    • Search Google Scholar
    • Export Citation
  • Sato M, Hutchinson DS, Halls ML, Furness SG, Bengtsson T, Evans BA & Summers RJ 2012 Interaction with caveolin-1 modulates G protein coupling of mouse beta3-adrenoceptor. Journal of Biological Chemistry 287 2067420688. (https://doi.org/10.1074/jbc.M111.280651)

    • Search Google Scholar
    • Export Citation
  • Scherer PE, Williams S, Fogliano M, Baldini G & Lodish HF 1995 A novel serum protein similar to C1q, produced exclusively in adipocytes. Journal of Biological Chemistry 270 2674626749. (https://doi.org/10.1074/jbc.270.45.26746)

    • Search Google Scholar
    • Export Citation
  • Schwencke C, Okumura S, Yamamoto M, Geng YJ & Ishikawa Y 1999 Colocalization of beta-adrenergic receptors and caveolin within the plasma membrane. Journal of Cellular Biochemistry 75 6472.

    • Search Google Scholar
    • Export Citation
  • Spranger J, Kroke A, Mohlig M, Bergmann MM, Ristow M, Boeing H & Pfeiffer AF 2003 Adiponectin and protection against type 2 diabetes mellitus. Lancet 361 226228. (https://doi.org/10.1016/S0140-6736(03)12255-6)

    • Search Google Scholar
    • Export Citation
  • Tandon P, Wafer R & Minchin JEN 2018 Adipose morphology and metabolic disease. Journal of Experimental Biology 221 jeb164970. (https://doi.org/10.1242/jeb.164970)

    • Search Google Scholar
    • Export Citation
  • Tchoukalova YD, Koutsari C, Karpyak MV, Votruba SB, Wendland E & Jensen MD 2008 Subcutaneous adipocyte size and body fat distribution. American Journal of Clinical Nutrition 87 5663. (https://doi.org/10.1093/ajcn/87.1.56)

    • Search Google Scholar
    • Export Citation
  • Thorn H, Stenkula KG, Karlsson M, Ortegren U, Nystrom FH, Gustavsson J & Stralfors P 2003 Cell surface orifices of caveolae and localization of caveolin to the necks of caveolae in adipocytes. Molecular Biology of the Cell 14 39673976. (https://doi.org/10.1091/mbc.e03-01-0050)

    • Search Google Scholar
    • Export Citation
  • Wang ZV, Schraw TD, Kim JY, Khan T, Rajala MW, Follenzi A & Scherer PE 2007 Secretion of the adipocyte-specific secretory protein adiponectin critically depends on thiol-mediated protein retention. Molecular and Cellular Biology 27 37163731. (https://doi.org/10.1128/MCB.00931-06)

    • Search Google Scholar
    • Export Citation
  • Willoughby D & Cooper DM 2007 Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiological Reviews 87 9651010. (https://doi.org/10.1152/physrev.00049.2006)

    • Search Google Scholar
    • Export Citation
  • Xie L, O’Reilly CP, Chapes SK & Mora S 2008 Adiponectin and leptin are secreted through distinct trafficking pathways in adipocytes. Biochimica et Biophysica Acta 1782 99108. (https://doi.org/10.1016/j.bbadis.2007.12.003)

    • Search Google Scholar
    • Export Citation
  • Xu A, Chan KW, Hoo RL, Wang Y, Tan KC, Zhang J, Chen B, Lam MC, Tse C, Cooper GJ, 2005 Testosterone selectively reduces the high molecular weight form of adiponectin by inhibiting its secretion from adipocytes. Journal of Biological Chemistry 280 1807318080. (https://doi.org/10.1074/jbc.M414231200)

    • Search Google Scholar
    • Export Citation
  • Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, 2001 The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature Medicine 7 941946. (https://doi.org/10.1038/90984)

    • Search Google Scholar
    • Export Citation