Peripheral T3 signaling is the target of pesticides in zebrafish larvae and adult liver

in Journal of Endocrinology
View More View Less
  • 1 Department of Science and Technology, University of Sannio, Benevento, Italy
  • 2 IRGS, Biogem, Ariano Irpino, Avellino, Italy
  • 3 Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
  • 4 IEOS-CNR, Naples, Italy
  • 5 Molecular Medicine and Medical Biotechnologies, University of Naples ‘Federico II’, Naples, Italy

Correspondence should be addressed to C Ambrosino: coambros@unisannio.it

*(M Colella, V Nittoli and A Porciello contributed equally to this work)

†(M Mallardo and C Ambrosino contributed equally as last authors)

Restricted access

The intra-tissue levels of thyroid hormones (THs) regulate organ functions. Environmental factors can impair these levels by damaging the thyroid gland and/or peripheral TH metabolism. We investigated the effects of embryonic and/or long-life exposure to low-dose pesticides, ethylene thiourea (ETU), chlorpyrifos (CPF) and both combined on intra-tissue T4/T3 metabolism/signaling in zebrafish at different life stages. Hypothyroidism was evident in exposed larvae that showed reduced number of follicles and induced tshb mRNAs. Despite that, we found an increase in free T4 (fT4) and free T3 (fT3) levels/signaling that was confirmed by transcriptional regulation of TH metabolic enzymes (deiodinases) and T3-regulated mRNAs (cpt1, igfbp1a). Second-generation larvae showed that thyroid and TH signaling was affected even when not directly exposed, suggesting the role of parental exposure. In adult zebrafish, we found that sex-dependent damage of hepatic T3 level/signaling was associated with liver steatosis, which was more pronounced in females, with sex-dependent alteration of transcripts codifying the key enzymes involved in ‘de novo lipogenesis’ and β-oxidation. We found impaired activation of liver T3 and PPARα/Foxo3a pathways whose deregulation was already involved in mammalian liver steatosis. The data emphasizes that the intra-tissue imbalance of the T3 level is due to thyroid endocrine disruptors (THDC) and suggests that the effect of a slight modification in T3 signaling might be amplified by its direct regulation or crosstalk with PPARα/Foxo3a pathways. Because T3 levels define the hypothyroid/hyperthyroid status of each organ, our findings might explain the pleiotropic and site-dependent effects of pesticides.

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 250 250 103
Full Text Views 17 17 13
PDF Downloads 10 10 7
  • Alt B, Reibe S, Feitosa NM, Elsalini OA, Wendl T & Rohr KB 2006 Analysis of origin and growth of the thyroid gland in Zebrafish. Developmental Dynamics 235 18721883. (https://doi.org/10.1002/dvdy.20831)

    • Search Google Scholar
    • Export Citation
  • Asaoka Y, Terai S, Sakaida I & Nishina H 2013 The expanding role of fish models in understanding non-alcoholic fatty liver disease. Disease Models and Mechanisms 6 905914. (https://doi.org/10.1242/dmm.011981)

    • Search Google Scholar
    • Export Citation
  • Axelstad M, Boberg J, Nellemann C, Kiersgaard M, Jacobsen PR, Christiansen S, Hougaard KS & Hass U 2011 Exposure to the widely used fungicide mancozeb causes thyroid hormone disruption in rat dams but no behavioral effects in the offspring. Toxicological Sciences 120 439446. (https://doi.org/10.1093/toxsci/kfr006)

    • Search Google Scholar
    • Export Citation
  • Belpoggi F, Soffritti M, Guarino M, Lambertini L, Cevolani D & Maltoni C 2002 Results of long-term experimental studies on the carcinogenicity of ethylene-bis-dithiocarbamate (mancozeb) in rats. Annals of the New York Academy of Sciences 982 123136. (https://doi.org/10.1111/j.1749-6632.2002.tb04928.x)

    • Search Google Scholar
    • Export Citation
  • Cao F, Souders CL 2nd, Li P, Pang S, Qiu L & Martyniuk CJ 2018 Biological impacts of organophosphates chlorpyrifos and diazinon on development, mitochondrial bioenergetics, and locomotor activity in zebrafish (Danio rerio). Neurotoxicology and Teratology 70 1827. (https://doi.org/10.1016/j.ntt.2018.10.001)

    • Search Google Scholar
    • Export Citation
  • Chang J, Wang M, Gui W, Zhao Y, Yu L & Zhu G 2012 Changes in thyroid hormone levels during zebrafish development. Zoological Science 29 181184. (https://doi.org/10.2108/zsj.29.181)

    • Search Google Scholar
    • Export Citation
  • Chhabra RS, Eustis S, Haseman JK, Kurtz PJ & Carlton BD 1992 Comparative carcinogenicity of ethylene thiourea with or without perinatal exposure in rats and mice. Fundamental and Applied Toxicology 18 405417. (https://doi.org/10.1016/0272-0590(92)90139-9)

    • Search Google Scholar
    • Export Citation
  • Chung HW, Lim JH, Kim MY, Shin SJ, Chung S, Choi BS, Kim HW, Kim YS, Park CW & Chang YS 2012 High-fat diet-induced renal cell apoptosis and oxidative stress in spontaneously hypertensive rat are ameliorated by fenofibrate through the PPARalpha-FoxO3a-PGC-1alpha pathway. Nephrology, Dialysis, Transplantation 27 22132225. (https://doi.org/10.1093/ndt/gfr613)

    • Search Google Scholar
    • Export Citation
  • Clift D, Richendrfer H, Thorn RJ, Colwill RM & Creton R 2014 High-throughput analysis of behavior in zebrafish larvae: effects of feeding. Zebrafish 11 455461. (https://doi.org/10.1089/zeb.2014.0989)

    • Search Google Scholar
    • Export Citation
  • Colborn T, vom Saal FS & Soto AM 1993 Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environmental Health Perspectives 101 378384. (https://doi.org/10.1289/ehp.93101378)

    • Search Google Scholar
    • Export Citation
  • Colella M, Cuomo D, Giacco A, Mallardo M, De Felice M & Ambrosino C 2020 Thyroid hormones and functional ovarian reserve: systemic vs. peripheral dysfunctions. Journal of Clinical Medicine 9 1679. (https://doi.org/10.3390/jcm9061679)

    • Search Google Scholar
    • Export Citation
  • Copaci I, Micu L & Voiculescu M 2006 The role of cytokines in non-alcoholic steatohepatitis. A review. Journal of Gastrointestinal and Liver Diseases 15 363373.

    • Search Google Scholar
    • Export Citation
  • Darras VM, Houbrechts AM & Van Herck SL 2015 Intracellular thyroid hormone metabolism as a local regulator of nuclear thyroid hormone receptor-mediated impact on vertebrate development. Biochimica et Biophysica Acta 1849 130141. (https://doi.org/10.1016/j.bbagrm.2014.05.004)

    • Search Google Scholar
    • Export Citation
  • De Angelis S, Tassinari R, Maranghi F, Eusepi A, Di Virgilio A, Chiarotti F, Ricceri L, Venerosi Pesciolini A, Gilardi E, Moracci G, 2009 Developmental exposure to chlorpyrifos induces alterations in thyroid and thyroid hormone levels without other toxicity signs in CD-1 mice. Toxicological Sciences 108 311319. (https://doi.org/10.1093/toxsci/kfp017)

    • Search Google Scholar
    • Export Citation
  • De Groef B, Van der Geyten S, Darras VM & Kühn ER 2006 Role of corticotropin-releasing hormone as a thyrotropin-releasing factor in non-mammalian vertebrates. General and Comparative Endocrinology 146 6268. (https://doi.org/10.1016/j.ygcen.2005.10.014)

    • Search Google Scholar
    • Export Citation
  • Eddins D, Cerutti D, Williams P, Linney E & Levin ED 2010 Zebrafish provide a sensitive model of persisting neurobehavioral effects of developmental chlorpyrifos exposure: comparison with nicotine and pilocarpine effects and relationship to dopamine deficits. Neurotoxicology and Teratology 32 99108. (https://doi.org/10.1016/j.ntt.2009.02.005)

    • Search Google Scholar
    • Export Citation
  • Elsalini OA, von Gartzen J, Cramer M & Rohr KB 2003 Zebrafish hhex, nk2.1a, and pax2.1 regulate thyroid growth and differentiation downstream of Nodal-dependent transcription factors. Developmental Biology 263 6780. (https://doi.org/10.1016/s0012-1606(03)00436-6)

    • Search Google Scholar
    • Export Citation
  • Faul F, Erdfelder E, Lang AG & Buchner A 2007 G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods 39 175191. (https://doi.org/10.3758/bf03193146)

    • Search Google Scholar
    • Export Citation
  • Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang X, Richmond PA, Modi BP, Correard S, Gheorghe M, Baranasic D, 2020 JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Research 48 D87D92. (https://doi.org/10.1093/nar/gkz1001)

    • Search Google Scholar
    • Export Citation
  • Guo C, Chen X, Song H, Maynard MA, Zhou Y, Lobanov AV, Gladyshev VN, Ganis JJ, Wiley D, Jugo RH, 2014 Intrinsic expression of a multiexon type 3 deiodinase gene controls zebrafish embryo size. Endocrinology 155 40694080. (https://doi.org/10.1210/en.2013-2029)

    • Search Google Scholar
    • Export Citation
  • Gutleb AC, Cambier S & Serchi T 2016 Impact of endocrine disruptors on the thyroid hormone system. Hormone Research in Paediatrics 86 271278. (https://doi.org/10.1159/000443501)

    • Search Google Scholar
    • Export Citation
  • Houbrechts AM, Delarue J, Gabriels IJ, Sourbron J & Darras VM 2016 Permanent deiodinase type 2 deficiency strongly perturbs zebrafish development, growth, and fertility. Endocrinology 157 36683681. (https://doi.org/10.1210/en.2016-1077)

    • Search Google Scholar
    • Export Citation
  • IARC 2001 IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon, France: International Agency for Research on Cancer. (available at: https://monographs.iarc.fr/wp-content/uploads/2018/06/mono79.pdf)

    • Search Google Scholar
    • Export Citation
  • Jansen MS, Cook GA, Song S & Park EA 2000 Thyroid hormone regulates carnitine palmitoyltransferase Ialpha gene expression through elements in the promoter and first intron. Journal of Biological Chemistry 275 3498934997. (https://doi.org/10.1074/jbc.M001752200)

    • Search Google Scholar
    • Export Citation
  • Jarque S, Fetter E, Veneman WJ, Spaink HP, Peravali R, Strahle U & Scholz S 2018 An automated screening method for detecting compounds with goitrogenic activity using transgenic zebrafish embryos. PLoS ONE 13 e0203087. (https://doi.org/10.1371/journal.pone.0203087)

    • Search Google Scholar
    • Export Citation
  • Jeong SH, Kim BY, Kang HG, Ku HO & Cho JH 2006 Effect of chlorpyrifos-methyl on steroid and thyroid hormones in rat F0- and F1-generations. Toxicology 220 189202. (https://doi.org/10.1016/j.tox.2006.01.005)

    • Search Google Scholar
    • Export Citation
  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B & Schilling TF 1995 Stages of embryonic development of the zebrafish. Developmental Dynamics 203 253310. (https://doi.org/10.1002/aja.1002030302)

    • Search Google Scholar
    • Export Citation
  • Leemans M, Couderg S, Demeneix B & Fini JB 2019 Pesticides With potential thyroid hormone-disrupting effects: a review of recent data. Frontiers in Endocrinology 10 743. (https://doi.org/10.3389/fendo.2019.00743)

    • Search Google Scholar
    • Export Citation
  • Levin ED, Sledge D, Roach S, Petro A, Donerly S & Linney E 2011 Persistent behavioral impairment caused by embryonic methylphenidate exposure in zebrafish. Neurotoxicology and Teratology 33 668673. (https://doi.org/10.1016/j.ntt.2011.06.004)

    • Search Google Scholar
    • Export Citation
  • Marelli F & Persani L 2017 How zebrafish research has helped in understanding thyroid diseases. F1000Research 6 2137. (https://doi.org/10.12688/f1000research.12142.1)

    • Search Google Scholar
    • Export Citation
  • Marians RC, Ng L, Blair HC, Unger P, Graves PN & Davies TF 2002 Defining thyrotropin-dependent and -independent steps of thyroid hormone synthesis by using thyrotropin receptor-null mice. PNAS 99 1577615781. (https://doi.org/10.1073/pnas.242322099)

    • Search Google Scholar
    • Export Citation
  • Marlatt VL, Gerrie E, Wiens S, Jackson F, Moon TW & Trudeau VL 2012 Estradiol and triiodothyronine differentially modulate reproductive and thyroidal genes in male goldfish. Fish Physiology and Biochemistry 38 283296. (https://doi.org/10.1007/s10695-011-9506-z)

    • Search Google Scholar
    • Export Citation
  • McCurley AT & Callard GV 2008 Characterization of housekeeping genes in zebrafish: male-female differences and effects of tissue type, developmental stage and chemical treatment. BMC Molecular Biology 9 102. (https://doi.org/10.1186/1471-2199-9-102)

    • Search Google Scholar
    • Export Citation
  • Mehran L, Amouzegar A, Bakhtiyari M, Mansournia MA, Rahimabad PK, Tohidi M & Azizi F 2017 Variations in serum free thyroxine concentration within the reference range predicts the incidence of metabolic syndrome in non-obese adults: a cohort study. Thyroid 27 886893. (https://doi.org/10.1089/thy.2016.0557)

    • Search Google Scholar
    • Export Citation
  • Mullur R, Liu YY & Brent GA 2014 Thyroid hormone regulation of metabolism. Physiological Reviews 94 355382. (https://doi.org/10.1152/physrev.00030.2013)

    • Search Google Scholar
    • Export Citation
  • Opitz R, Maquet E, Zoenen M, Dadhich R & Costagliola S 2011 TSH receptor function is required for normal thyroid differentiation in zebrafish. Molecular Endocrinology 25 15791599. (https://doi.org/10.1210/me.2011-0046)

    • Search Google Scholar
    • Export Citation
  • Oppenheimer JH, Schwartz HL, Mariash CN, Kinlaw WB, Wong NC & Freake HC 1987 Advances in our understanding of thyroid hormone action at the cellular level. Endocrine Reviews 8 288308. (https://doi.org/10.1210/edrv-8-3-288)

    • Search Google Scholar
    • Export Citation
  • Porreca I, De Felice E, Fagman H, Di Lauro R & Sordino P 2012 Zebrafish bcl2l is a survival factor in thyroid development. Developmental Biology 366 142152. (https://doi.org/10.1016/j.ydbio.2012.04.013)

    • Search Google Scholar
    • Export Citation
  • Porreca I, DAngelo F, De Franceschi L, Matte A, Ceccarelli M, Iolascon A, Zamo A, Russo F, Ravo M, Tarallo R, 2016 Pesticide toxicogenomics across scales: in vitro transcriptome predicts mechanisms and outcomes of exposure in vivo. Scientific Reports 6 38131. (https://doi.org/10.1038/srep38131)

    • Search Google Scholar
    • Export Citation
  • Porreca I, Ulloa-Severino L, Almeida P, Cuomo D, Nardone A, Falco G, Mallardo M & Ambrosino C 2017 Molecular targets of developmental exposure to bisphenol A in diabesity: a focus on endoderm-derived organs. Obesity Reviews 18 99108. (https://doi.org/10.1111/obr.12471)

    • Search Google Scholar
    • Export Citation
  • Postiglione MP, Parlato R, Rodriguez-Mallon A, Rosica A, Mithbaokar P, Maresca M, Marians RC, Davies TF, Zannini MS, De Felice M, 2002 Role of the thyroid-stimulating hormone receptor signaling in development and differentiation of the thyroid gland. PNAS 99 1546215467. (https://doi.org/10.1073/pnas.242328999)

    • Search Google Scholar
    • Export Citation
  • Radenne A, Akpa M, Martel C, Sawadogo S, Mauvoisin D & Mounier C 2008 Hepatic regulation of fatty acid synthase by insulin and T3: evidence for T3 genomic and nongenomic actions. American Journal of Physiology: Endocrinology and Metabolism 295 E884E894. (https://doi.org/10.1152/ajpendo.90438.2008)

    • Search Google Scholar
    • Export Citation
  • Reale C, Porreca I, Russo F, Marotta M, Roberto L, Russo NA, Carchia E, Mallardo M, De Felice M & Ambrosino C 2018 Genetic background and window of exposure contribute to thyroid dysfunction promoted by low-dose exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice. Scientific Reports 8 16324. (https://doi.org/10.1038/s41598-018-34427-2)

    • Search Google Scholar
    • Export Citation
  • Reale C, Russo F, Credendino SC, Cuomo D, De Vita G, Mallardo M, Pennino F, Porreca I, Triassi M, De Felice M, 2019 A toxicogenomic approach reveals a novel gene regulatory network active in in vitro and in vivo models of thyroid carcinogenesis. International Journal of Environmental Research and Public Health 16 122. (https://doi.org/10.3390/ijerph16010122)

    • Search Google Scholar
    • Export Citation
  • Richendrfer H & Creton R 2013 Automated high-throughput behavioral analyses in zebrafish larvae. Journal of Visualized Experiments 77 e50622. (https://doi.org/10.3791/50622)

    • Search Google Scholar
    • Export Citation
  • Richendrfer H, Pelkowski SD, Colwill RM & Creton R 2012 Developmental sub-chronic exposure to chlorpyrifos reduces anxiety-related behavior in zebrafish larvae. Neurotoxicology and Teratology 34 458465. (https://doi.org/10.1016/j.ntt.2012.04.010)

    • Search Google Scholar
    • Export Citation
  • Schlaepfer IR & Joshi M 2020 CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential. Endocrinology 161 bqz046. (https://doi.org/10.1210/endocr/bqz046)

    • Search Google Scholar
    • Export Citation
  • Shao H, Mohamed EM, Xu GG, Waters M, Jing K, Ma Y, Zhang Y, Spiegel S, Idowu MO & Fang X 2016 Carnitine palmitoyltransferase 1A functions to repress FoxO transcription factors to allow cell cycle progression in ovarian cancer. Oncotarget 7 38323846. (https://doi.org/10.18632/oncotarget.6757)

    • Search Google Scholar
    • Export Citation
  • Sinha RA, Singh BK & Yen PM 2018 Direct effects of thyroid hormones on hepatic lipid metabolism. Nature Reviews: Endocrinology 14 259269. (https://doi.org/10.1038/nrendo.2018.10)

    • Search Google Scholar
    • Export Citation
  • Taki-Eldin A, Zhou L, Xie HY, Chen KJ, Yu D, He Y & Zheng SS 2012 Triiodothyronine attenuates hepatic ischemia/reperfusion injury in a partial hepatectomy model through inhibition of proinflammatory cytokines, transcription factors, and adhesion molecules. Journal of Surgical Research 178 646656. (https://doi.org/10.1016/j.jss.2012.05.069)

    • Search Google Scholar
    • Export Citation
  • Tzivion G, Dobson M & Ramakrishnan G 2011 FoxO transcription factors; regulation by AKT and 14-3-3 proteins. Biochimica et Biophysica Acta 1813 19381945. (https://doi.org/10.1016/j.bbamcr.2011.06.002)

    • Search Google Scholar
    • Export Citation
  • Van der Vos KE & Coffer PJ 2008 FOXO-binding partners: it takes two to tango. Oncogene 27 22892299. (https://doi.org/10.1038/onc.2008.22)

  • Vanderpump MP 2011 The epidemiology of thyroid disease. British Medical Bulletin 99 3951. (https://doi.org/10.1093/bmb/ldr030)

  • Videla LA, Fernandez V, Vargas R, Cornejo P, Tapia G, Varela N, Valenzuela R, Arenas A, Fernandez J, Hernandez-Rodas MC, 2016 Upregulation of rat liver PPARalpha-FGF21 signaling by a docosahexaenoic acid and thyroid hormone combined protocol. BioFactors 42 638646. (https://doi.org/10.1002/biof.1300)

    • Search Google Scholar
    • Export Citation
  • Wang Y, Lv L, Yu Y, Yang G, Xu Z, Wang Q & Cai L 2017 Single and joint toxic effects of five selected pesticides on the early life stages of zebrafish (Denio rerio). Chemosphere 170 6167. (https://doi.org/10.1016/j.chemosphere.2016.12.025)

    • Search Google Scholar
    • Export Citation
  • Westerfield M 1995 The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio). Eugene, OR, USA: University of Oregon Press .

    • Search Google Scholar
    • Export Citation
  • Xia M & Zhu Y 2013 FOXO3a involvement in the release of TNF-alpha stimulated by ATP in spinal cord astrocytes. Journal of Molecular Neuroscience 51 792804. (https://doi.org/10.1007/s12031-013-0067-8)

    • Search Google Scholar
    • Export Citation
  • Yang D, Lauridsen H, Buels K, Chi LH, La Du J, Bruun DA, Olson JR, Tanguay RL & Lein PJ 2011 Chlorpyrifos-oxon disrupts zebrafish axonal growth and motor behavior. Toxicological Sciences 121 146159. (https://doi.org/10.1093/toxsci/kfr028)

    • Search Google Scholar
    • Export Citation
  • Zada D, Blitz E & Appelbaum L 2017 Zebrafish – an emerging model to explore thyroid hormone transporters and psychomotor retardation. Molecular and Cellular Endocrinology 459 5358. (https://doi.org/10.1016/j.mce.2017.03.004)

    • Search Google Scholar
    • Export Citation
  • Zoeller TR 2010 Environmental chemicals targeting thyroid. Hormones 9 2840. (https://doi.org/10.14310/horm.2002.1250)