Gut-liver axis modulation in fructose-fed mice: a role for PPAR-alpha and linagliptin

in Journal of Endocrinology
Authors:
Flávia Maria Silva-Veiga Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil

Search for other papers by Flávia Maria Silva-Veiga in
Current site
Google Scholar
PubMed
Close
,
Carolline Santos Miranda Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil

Search for other papers by Carolline Santos Miranda in
Current site
Google Scholar
PubMed
Close
,
Fabiane Ferreira Martins Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil

Search for other papers by Fabiane Ferreira Martins in
Current site
Google Scholar
PubMed
Close
,
Julio Beltrame Daleprane Laboratory for Studies of Interactions between Nutrition and Genetics, LEING, Institute of Nutrition, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil

Search for other papers by Julio Beltrame Daleprane in
Current site
Google Scholar
PubMed
Close
,
Carlos Alberto Mandarim-de-Lacerda Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil

Search for other papers by Carlos Alberto Mandarim-de-Lacerda in
Current site
Google Scholar
PubMed
Close
, and
Vanessa Souza-Mello Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil

Search for other papers by Vanessa Souza-Mello in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to V Souza-Mello: souzamello.uerj@gmail.com
Restricted access
Rent on DeepDyve

Sign up for journal news

Fructose dietary intake affects the composition of the intestinal microbiota and influences the development of hepatic steatosis. Endotoxins produced by gram-negative bacteria alter intestinal permeability and cause bacterial translocation. This study evaluated the effects of gut microbiota modulation by a purified PPAR-alpha agonist (WY14643), a DPP-4 inhibitor (linagliptin), or their association on intestinal barrier integrity, endotoxemia, and hepatic energy metabolism in high-fructose-fed C57BL/6 mice. Fifty mice were divided to receive the control diet (C group) or the high-fructose diet (HFRU) for 12 weeks. Subsequently, the HFRU group was divided to initiate the treatment with PPAR-alpha agonist (3.5 mg/kg/BM) and DPP-4 inhibitor (15 mg/kg/BM). The HFRU group had glucose intolerance, endotoxemia, and dysbiosis (with increased Proteobacteria) without changes in body mass in comparison with the C group. HFRU group showed damaged intestinal ultrastructure, which led to liver inflammation and marked hepatic steatosis in the HFRU group when compared to the C group. PPAR-alpha activation and DPP-4 inhibition countered glucose intolerance, endotoxemia, and dysbiosis, ameliorating the ultrastructure of the intestinal barrier and reducing Tlr4 expression in the liver of treated animals. These beneficial effects suppressed lipogenesis and mitigated hepatic steatosis. In conclusion, the results herein propose a role for PPAR-alpha activation, DPP-4 inhibition, and their association in attenuating hepatic steatosis by gut-liver axis modulation in high-fructose mice model. These observations suggest these treatments as potential targets to treat hepatic steatosis and avoid its progression.

 

  • Collapse
  • Expand
  • Aroor AR, Manrique-Acevedo C & Demarco VG 2018 The role of dipeptidylpeptidase-4 inhibitors in management of cardiovascular disease in diabetes; focus on linagliptin. Cardiovascular Diabetology 17 59. (https://doi.org/10.1186/s12933-018-0704-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Birchenough GM, Johansson ME, Gustafsson JK, Bergstrom JH & Hansson GC 2015 New developments in goblet cell mucus secretion and function. Mucosal Immunology 8 712719. (https://doi.org/10.1038/mi.2015.32)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Blech S, Ludwig-Schwellinger E, Grafe-Mody EU, Withopf B & Wagner K 2010 The metabolism and disposition of the oral dipeptidyl peptidase-4 inhibitor, linagliptin, in humans. Drug Metabolism and Disposition 38 667678. (https://doi.org/10.1124/dmd.109.031476)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Burgueno JF & Abreu MT 2020 Epithelial toll-like receptors and their role in gut homeostasis and disease. Nature Reviews: Gastroenterology and Hepatology 17 263278. (https://doi.org/10.1038/s41575-019-0261-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Buzzetti E, Pinzani M & Tsochatzis EA 2016 The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism: Clinical and Experimental 65 10381048. (https://doi.org/10.1016/j.metabol.2015.12.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Campbell JE & Drucker DJ 2013 Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metabolism 17 819837. (https://doi.org/10.1016/j.cmet.2013.04.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Candido FG, Valente FX, Grzeskowiak ŁM, Moreira APB, Rocha DMUP & Alfenas RCG 2018 Impact of dietary fat on gut microbiota and low-grade systemic inflammation: mechanisms and clinical implications on obesity. International Journal of Food Sciences and Nutrition 69 125143. (https://doi.org/10.1080/09637486.2017.1343286)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Catta-Preta M, Mendonca LS, Fraulob-Aquino J, Aguila MB & Mandarim-De-Lacerda CA 2011 A critical analysis of three quantitative methods of assessment of hepatic steatosis in liver biopsies. Virchows Archiv 459 477485. (https://doi.org/10.1007/s00428-011-1147-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Caussy C, Hsu C, Lo MT, Liu A, Bettencourt R, Ajmera VH, Bassirian S, Hooker J, Sy E, Richards L, et al.2018 Link between gut-microbiome derived metabolite and shared gene-effects with hepatic steatosis and fibrosis in NAFLD. Hepatology 68 918932. (https://doi.org/10.1002/hep.29892)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Minicis S, Rychlicki C, Agostinelli L, Saccomanno S, Candelaresi C, Trozzi L, Mingarelli E, Facinelli B, Magi G, Palmieri C, et al.2014 Dysbiosis contributes to fibrogenesis in the course of chronic liver injury in mice. Hepatology 59 17381749. (https://doi.org/10.1002/hep.26695)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Oliveira Correia BR, Rachid TL, De Oliveira Glauser JS, Martins FF, Mandarim-De-Lacerda CA & Souza-Mello V 2019 High dose of linagliptin induces thermogenic beige adipocytes in the subcutaneous white adipose tissue in diet-induced obese C57BL/6 mice. Endocrine 65 252262. (https://doi.org/10.1007/s12020-019-01969-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Di Paola M, Bonechi E, Provensi G, Costa A, Clarke G, Ballerini C, De Filippo C & Passani MB 2018 Oleoylethanolamide treatment affects gut microbiota composition and the expression of intestinal cytokines in Peyer's patches of mice. Scientific Reports 8 14881. (https://doi.org/10.1038/s41598-018-32925-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Do MH, Lee E, Oh MJ, Kim Y & Park HY 2018 High-glucose or -fructose diet cause changes of the gut microbiota and metabolic disorders in mice without body weight change. Nutrients 10 761. (https://doi.org/10.3390/nu10060761)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Drucker DJ & Nauck MA 2006 The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368 16961705. (https://doi.org/10.1016/S0140-6736(06)69705-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Echeverria F, Ortiz M, Valenzuela R & Videla LA 2016 Long-chain polyunsaturated fatty acids regulation of PPARs, signaling: relationship to tissue development and aging. Prostaglandins, Leukotrienes, and Essential Fatty Acids 114 2834. (https://doi.org/10.1016/j.plefa.2016.10.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Esposito G, Capoccia E, Turco F, Palumbo I, Lu J, Steardo A, Cuomo R, Sarnelli G & Steardo L 2014 Palmitoylethanolamide improves colon inflammation through an enteric glia/toll like receptor 4-dependent PPAR-alpha activation. Gut 63 13001312. (https://doi.org/10.1136/gutjnl-2013-305005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Friedman SL 2008 Mechanisms of hepatic fibrogenesis. Gastroenterology 134 16551669. (https://doi.org/10.1053/j.gastro.2008.03.003)

  • Fuchs H, Runge F & Held HD 2012 Excretion of the dipeptidyl peptidase-4 inhibitor linagliptin in rats is primarily by biliary excretion and P-gp-mediated efflux. European Journal of Pharmaceutical Sciences 45 533538. (https://doi.org/10.1016/j.ejps.2011.11.018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hernandez-Rodas MC, Valenzuela R, Echeverria F, Rincon-Cervera , Espinosa A, Illesca P, Munoz P, Corbari A, Romero N, Gonzalez-Manan D, et al.2017 Supplementation with docosahexaenoic acid and extra virgin olive oil prevents liver steatosis induced by a high-fat diet in mice through PPAR-alpha and Nrf2 upregulation with concomitant SREBP-1c and NF-kB downregulation. Molecular Nutrition and Food Research 61. 1(https://doi.org/10.1002/mnfr.201700479)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hiromura M, Nohtomi K, Mori Y, Kataoka H, Sugano M, Ohnuma K, Kuwata H & Hirano T 2018 Caveolin-1, a binding protein of CD26, is essential for the anti-inflammatory effects of dipeptidyl peptidase-4 inhibitors on human and mouse macrophages. Biochemical and Biophysical Research Communications 495 223229. (https://doi.org/10.1016/j.bbrc.2017.11.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jojima T, Tomotsune T, Iijima T, Akimoto K, Suzuki K & Aso Y 2016 Empagliflozin (an SGLT2 inhibitor), alone or in combination with linagliptin (a DPP-4 inhibitor), prevents steatohepatitis in a novel mouse model of non-alcoholic steatohepatitis and diabetes. Diabetology and Metabolic Syndrome 8 45. (https://doi.org/10.1186/s13098-016-0169-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, Bogardus C, Gordon JI & Krakoff J 2011 Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. American Journal of Clinical Nutrition 94 5865. (https://doi.org/10.3945/ajcn.110.010132)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kirpich IA, Marsano LS & Mcclain CJ 2015 Gut-liver axis, nutrition, and non-alcoholic fatty liver disease. Clinical Biochemistry 48 923930. (https://doi.org/10.1016/j.clinbiochem.2015.06.023)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lambertz J, Weiskirchen S, Landert S & Weiskirchen R 2017 Fructose: a dietary sugar in crosstalk with microbiota contributing to the development and progression of non-alcoholic liver disease. Frontiers in Immunology 8 1159. (https://doi.org/10.3389/fimmu.2017.01159)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Larter CZ, Yeh MM, Van Rooyen DM, Brooling J, Ghatora K & Farrell GC 2012 Peroxisome proliferator-activated receptor-alpha agonist, Wy 14,643, improves metabolic indices, steatosis and ballooning in diabetic mice with non-alcoholic steatohepatitis. Journal of Gastroenterology and Hepatology 27 341350. (https://doi.org/10.1111/j.1440-1746.2011.06939.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leung C, Rivera L, Furness JB & Angus PW 2016 The role of the gut microbiota in NAFLD. Nature Reviews: Gastroenterology and Hepatology 13 412425. (https://doi.org/10.1038/nrgastro.2016.85)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu J, Zhuang ZJ, Bian DX, Ma XJ, Xun YH, Yang WJ, Luo Y, Liu YL, Jia L, Wang Y, et al.2014 Toll-like receptor-4 signalling in the progression of non-alcoholic fatty liver disease induced by high-fat and high-fructose diet in mice. Clinical and Experimental Pharmacology and Physiology 41 482488. (https://doi.org/10.1111/1440-1681.12241)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Livak KJ & Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 402408. (https://doi.org/10.1006/meth.2001.1262)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lua I, Li Y, Zagory JA, Wang KS, French SW, Sevigny J & Asahina K 2016 Characterization of hepatic stellate cells, portal fibroblasts, and mesothelial cells in normal and fibrotic livers. Journal of Hepatology 64 11371146. (https://doi.org/10.1016/j.jhep.2016.01.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Magliano DC, Penna-De-Carvalho A, Vazquez-Carrera M, Mandarim-De-Lacerda CA & Aguila MB 2015 Short-term administration of GW501516 improves inflammatory state in white adipose tissue and liver damage in high-fructose-fed mice through modulation of the renin-angiotensin system. Endocrine 50 355367. (https://doi.org/10.1007/s12020-015-0590-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maida A, Lamont BJ, Cao X & Drucker DJ 2011 Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-alpha in mice. Diabetologia 54 339349. (https://doi.org/10.1007/s00125-010-1937-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Manoharan I, Suryawanshi A, Hong Y, Ranganathan P, Shanmugam A, Ahmad S, Swafford D, Manicassamy B, Ramesh G, Koni PA, et al.2016 Homeostatic PPARalpha signaling limits inflammatory responses to commensal microbiota in the intestine. Journal of Immunology 196 47394749. (https://doi.org/10.4049/jimmunol.1501489)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Matsushita N, Osaka T, Haruta I, Ueshiba H, Yanagisawa N, Omori-Miyake M, Hashimoto E, Shibata N, Tokushige K, Saito K, et al.2016 Effect of lipopolysaccharide on the progression of non-alcoholic fatty liver disease in high caloric diet-fed mice. Scandinavian Journal of Immunology 83 109118. (https://doi.org/10.1111/sji.12397)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Michurina SV, Ishenko IJ, Klimontov VV, Archipov SA, Myakina NE, Cherepanova MA, Zavjalov EL, Koncevaya GV & Konenkov VI 2016 Linagliptin alleviates fatty liver disease in diabetic db/db mice. World Journal of Diabetes 7 534546. (https://doi.org/10.4239/wjd.v7.i19.534)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Navarro-Garcia F, Gutierrez-Jimenez J, Garcia-Tovar C, Castro LA, Salazar-Gonzalez H & Cordova V 2010 Pic, an autotransporter protein secreted by different pathogens in the Enterobacteriaceae family, is a potent mucus secretagogue. Infection and Immunity 78 41014109. (https://doi.org/10.1128/IAI.00523-10)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pajecki D, De Oliveira LC, Sabino EC, De Souza-Basqueira M, Dantas ACB, Nunes GC, De Cleva R & Santo MA 2019 Changes in the intestinal microbiota of superobese patients after bariatric surgery. Clinics 74 e1198. (https://doi.org/10.6061/clinics/2019/e1198)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Panasevich MR, Meers GM, Linden MA, Booth FW, Perfield JW 2nd, Fritsche KL, Wankhade UD, Chintapalli SV, Shankar K, Ibdah JA, et al.2018 High-fat, high-fructose, high-cholesterol feeding causes severe NASH and cecal microbiota dysbiosis in juvenile Ossabaw swine. American Journal of Physiology: Endocrinology and Metabolism 314 E78E92. (https://doi.org/10.1152/ajpendo.00015.2017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Paniagua JA, Escandell-Morales JM, Gil-Contreras D, Berral De La Rosa FJ, Romero-Jimenez M, Gómez-Urbano A, Sanchez-Lopez A, Bellido E, Poyato A, Calatayud B, et al.2014 Central obesity and altered peripheral adipose tissue gene expression characterize the NAFLD patient with insulin resistance: role of nutrition and insulin challenge. Nutrition 30 177185. (https://doi.org/10.1016/j.nut.2013.07.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pearce SC, Al-Jawadi A, Kishida K, Yu S, Hu M, Fritzky LF, Edelblum KL, Gao N & Ferraris RP 2018 Marked differences in tight junction composition and macromolecular permeability among different intestinal cell types. BMC Biology 16 19. (https://doi.org/10.1186/s12915-018-0481-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rachid TL, Penna-De-Carvalho A, Bringhenti I, Aguila MB, Mandarim-De-Lacerda CA & Souza-Mello V 2015 Fenofibrate (PPARalpha agonist) induces beige cell formation in subcutaneous white adipose tissue from diet-induced male obese mice. Molecular and Cellular Endocrinology 402 8694. (https://doi.org/10.1016/j.mce.2014.12.027)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rahman K, Desai C, Iyer SS, Thorn NE, Kumar P, Liu Y, Smith T, Neish AS, Li H, Tan S, et al.2016 Loss of junctional adhesion molecule A promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol. Gastroenterology 151 733.e12746.e12. (https://doi.org/10.1053/j.gastro.2016.06.022)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Reimer RA, Grover GJ, Koetzner L, Gahler RJ, Lyon MR & Wood S 2014 Combining sitagliptin/metformin with a functional fiber delays diabetes progression in Zucker rats. Journal of Endocrinology 220 361373. (https://doi.org/10.1530/JOE-13-0484)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rizzatti G, Lopetuso LR, Gibiino G, Binda C & Gasbarrini A 2017 Proteobacteria: a common factor in human diseases. BioMed Research International 2017 9351507. (https://doi.org/10.1155/2017/9351507)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sato M, Suzuki S & Senoo H 2003 Hepatic stellate cells: unique characteristics in cell biology and phenotype. Cell Structure and Function 28 105112. (https://doi.org/10.1247/csf.28.105)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sato N, Nakamura Y, Yamadera S, Inagaki M, Kenmotsu S, Saito H, Oguchi T, Tsuji M, Chokki H, Ohsawa I, et al.2019 Linagliptin inhibits lipopolysaccharide-induced inflammation concentration-dependently and -independently. Journal of Inflammation Research 12 285291. (https://doi.org/10.2147/JIR.S221761)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shao Y, Ding R, Xu B, Hua R, Shen Q, He K & Yao Q 2017 Alterations of gut microbiota after Roux-en-Y gastric bypass and sleeve gastrectomy in Sprague-Dawley rats. Obesity Surgery 27 295302. (https://doi.org/10.1007/s11695-016-2297-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shigeto M, Ramracheya R, Tarasov AI, Cha CY, Chibalina MV, Hastoy B, Philippaert K, Reinbothe T, Rorsman N, Salehi A, et al.2015 GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation. Journal of Clinical Investigation 125 47144728. (https://doi.org/10.1172/JCI81975)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shin NR, Whon TW & Bae JW 2015 Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology 33 496503. (https://doi.org/10.1016/j.tibtech.2015.06.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Souza-Mello V 2015 Peroxisome proliferator-activated receptors as targets to treat non-alcoholic fatty liver disease. World Journal of Hepatology 7 10121019. (https://doi.org/10.4254/wjh.v7.i8.1012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Spruss A, Kanuri G, Wagnerberger S, Haub S, Bischoff SC & Bergheim I 2009 Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology 50 10941104. (https://doi.org/10.1002/hep.23122)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Su YR, Hong YP, Mei FC, Wang CY, Li M, Zhou Y, Zhao KL, Yu J & Wang WX 2019 High-fat diet aggravates the intestinal barrier injury via TLR4-RIP3 pathway in a rat model of severe acute pancreatitis. Mediators of Inflammation 2019 2512687. (https://doi.org/10.1155/2019/2512687)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Takahashi H, Sanada K, Nagai H, Li Y, Aoki Y, Ara T, Seno S, Matsuda H, Yu R, Kawada T, et al.2017 Over-expression of PPARalpha in obese mice adipose tissue improves insulin sensitivity. Biochemical and Biophysical Research Communications 493 108114. (https://doi.org/10.1016/j.bbrc.2017.09.067)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tschanz SA, Burri PH & Weibel ER 2011 A simple tool for stereological assessment of digital images: the STEPanizer. Journal of Microscopy 243 4759. (https://doi.org/10.1111/j.1365-2818.2010.03481.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Valenzuela R & Videla LA 2020 Impact of the co-administration of N-3 fatty acids and olive oil components in preclinical nonalcoholic fatty liver disease models: a mechanistic view. Nutrients 12 499. (https://doi.org/10.3390/nu12020499)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Veiga FMS, Graus-Nunes F, Rachid TL, Barreto AB, Mandarim-De-Lacerda CA & Souza-Mello V 2017 Anti-obesogenic effects of Wy14643 (PPAR-alpha agonist): hepatic mitochondrial enhancement and suppressed lipogenic pathway in diet-induced obese mice. Biochimie 140 106116. (https://doi.org/10.1016/j.biochi.2017.07.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Volynets V, Louis S, Pretz D, Lang L, Ostaff MJ, Wehkamp J & Bischoff SC 2017 Intestinal barrier function and the gut microbiome are differentially affected in mice fed a western-style diet or drinking water supplemented with fructose. Journal of Nutrition 147 770780. (https://doi.org/10.3945/jn.116.242859)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou X, Han D, Xu R, Li S, Wu H, Qu C, Wang F, Wang X & Zhao Y 2014 A model of metabolic syndrome and related diseases with intestinal endotoxemia in rats fed a high fat and high sucrose diet. PLoS ONE 9 e115148. (https://doi.org/10.1371/journal.pone.0115148)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou GY, Yi YX, Jin LX, Lin W, Fang PP, Lin XZ, Zheng Y & Pan CW 2016 The protective effect of juglanin on fructose-induced hepatitis by inhibiting inflammation and apoptosis through TLR4 and JAK2/STAT3 signaling pathways in fructose-fed rats. Biomedicine and Pharmacotherapy 81 318328. (https://doi.org/10.1016/j.biopha.2016.04.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhuge F, Ni Y, Nagashimada M, Nagata N, Xu L, Mukaida N, Kaneko S & Ota T 2016 DPP-4 inhibition by linagliptin attenuates obesity-related inflammation and insulin resistance by regulating M1/M2 macrophage polarization. Diabetes 65 29662979. (https://doi.org/10.2337/db16-0317)

    • PubMed
    • Search Google Scholar
    • Export Citation