Lack of adrenal TSPO/PBR expression in hamsters reinforces correlation to triglyceride metabolism

in Journal of Endocrinology
Authors:
Prasanthi P Koganti Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA

Search for other papers by Prasanthi P Koganti in
Current site
Google Scholar
PubMed
Close
and
Vimal Selvaraj Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA

Search for other papers by Vimal Selvaraj in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8728-3765

Correspondence should be addressed to V Selvaraj: vs88@cornell.edu
Restricted access
Rent on DeepDyve

Sign up for journal news

Despite being a highly conserved protein, the precise role of the mitochondrial translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), remains elusive. The void created by studies that overturned a presumptive model that described TSPO/PBR as a mitochondrial cholesterol transporter for steroidogenesis has been filled with evidence that it can affect mitochondrial metabolic functions across different model systems. We previously reported that TSPO/PBR deficient steroidogenic cells upregulate mitochondrial fatty acid oxidation and presented a strong positive correlation between TSPO/PBR expression and tissues active in triglyceride metabolism or lipid storage. Nevertheless, the highlighting of inconsistencies in prior work has provoked reprisals that threaten to stifle progress. One frequent factoid presented as being supportive of a cholesterol import function is that there are no steroid-synthesizing cell types without high TSPO/PBR expression. In this study, we examine the hamster adrenal gland that is devoid of lipid droplets in the cortex and largely relies on de novo cholesterol biosynthesis and uptake for steroidogenesis. We find that Tspo expression in the hamster adrenal is imperceptible compared to the mouse. This observation is consistent with a substantially low expression of Cpt1a in the hamster adrenal, indicating minimal mitochondrial fatty acid oxidation capacity compared to the mouse. These findings provide further reinforcement that the much sought-after mechanism of TSPO/PBR function remains correlated with the extent of cellular triglyceride metabolism. Thus, TSPO/PBR could have a homeostatic function relevant only to steroidogenic systems that manage triglycerides associated with lipid droplets.

 

  • Collapse
  • Expand
  • Alpert M 1950 Observations on the histophysiology of the adrenal gland of the golden hamster. Endocrinology 46 166176. (https://doi.org/10.1210/endo-46-2-166)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Anholt RR, De Souza EB, Oster-Granite ML & Snyder SH 1985 Peripheral-type benzodiazepine receptors: autoradiographic localization in whole-body sections of neonatal rats. Journal of Pharmacology and Experimental Therapeutics 233 517526.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Anholt RRH, Pedersen PL, De Souza EB & Snyder SH 1986 The peripheral-type benzodiazepine receptor, localization to the mitochondrial outer membrane. Journal of Biological Chemistry 261 576583.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Arakane F, Sugawara T, Nishino H, Liu Z, Holt JA, Pain D, Stocco DM, Miller WL & Strauss JF 3rd 1996 Steroidogenic acute regulatory protein (StAR) retains activity in the absence of its mitochondrial import sequence: implications for the mechanism of StAR action. PNAS 93 1373113736. (https://doi.org/10.1073/pnas.93.24.13731)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Arakane F, Kallen CB, Watari H, Foster JA, Sepuri NBV, Pain D, Stayrook SE, Lewis M, Gerton GL & Strauss JF 1998 The mechanism of action of steroidogenic acute regulatory protein (StAR): StAR acts on the outside of mitochondria to stimulate steroidogenesis. Journal of Biological Chemistry 273 1633916345. (https://doi.org/10.1074/jbc.273.26.16339)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Banati RB, Middleton RJ, Chan R, Hatty CR, Kam WW, Quin C, Graeber MB, Parmar A, Zahra D, Callaghan P, et al.2014 Positron emission tomography and functional characterization of a complete PBR/TSPO knockout. Nature Communications 5 5452. (https://doi.org/10.1038/ncomms6452)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barron AM, Ji B, Kito S, Suhara T & Higuchi M 2018 Steroidogenic abnormalities in translocator protein knockout mice and significance in the aging male. Biochemical Journal 475 7585. (https://doi.org/10.1042/BCJ20170645)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bisgaier CL, Chanderbhan R, Hinds RW & Vahouny GV 1985 Adrenal cholesterol esters as substrate source for steroidogenesis. Journal of Steroid Biochemistry 23 967974. (https://doi.org/10.1016/0022-4731(85)90054-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bucana CD & Nadakavukaren MJ 1973 Ultrastructural investigation of the postnatal development of the hamster harderian gland – II. Male and female. Zeitschrift Für Zellforschung Und Mikroskopische Anatomie 142 112. (https://doi.org/10.1007/BF00306700)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Caron KM, Soo SC, Wetsel WC, Stocco DM, Clark BJ & Parker KL 1997 Targeted disruption of the mouse gene encoding steroidogenic acute regulatory protein provides insights into congenital lipoid adrenal hyperplasia. PNAS 94 1154011545. (https://doi.org/10.1073/pnas.94.21.11540)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chung JY, Chen H, Papadopoulos V & Zirkin B 2020 Cholesterol accumulation, lipid droplet formation, and steroid production in Leydig cells: role of translocator protein (18‐kDa). Andrology 8 719730. (https://doi.org/10.1111/andr.12733)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clark BJ, Wells J, King SR & Stocco DM 1994 The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). Journal of Biological Chemistry 269 2831428322.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Culty M, Li H, Boujrad N, Amri H, Vidic B, Bernassau JM, Reversat JL & Papadopoulos V 1999 In vitro studies on the role of the peripheral-type benzodiazepine receptor in steroidogenesis. Journal of Steroid Biochemistry and Molecular Biology 69 123130. (https://doi.org/10.1016/s0960-0760(99)00056-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Freeman DA & Ontko JA 1992 Accumulation and mobilization of triglycerides and cholesteryl esters in Leydig tumor cells. Journal of Lipid Research 33 11391146.

  • Gatliff J & Campanella M 2016 TSPO: kaleidoscopic 18-kDa amid biochemical pharmacology, control and targeting of mitochondria. Biochemical Journal 473 107121. (https://doi.org/10.1042/BJ20150899)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gatliff J, East D, Crosby J, Abeti R, Harvey R, Craigen W, Parker P & Campanella M 2014 TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control. Autophagy 10 22792296. (https://doi.org/10.4161/15548627.2014.991665)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gavish M & Veenman L 2018 Regulation of mitochondrial, cellular, and organismal functions by TSPO. Advances in Pharmacology 82 103136 (https://doi.org/10.1016/bs.apha.2017.09.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gavish M, Bachman I, Shoukrun R, Katz Y, Veenman L, Weisinger G & Weizman A 1999 Enigma of the peripheral benzodiazepine receptor. Pharmacological Reviews 51 629650.

  • Hauet T, Yao ZX, Bose HS, Wall CT, Han Z, Li W, Hales DB, Miller WL, Culty M & Papadopoulos V 2005 Peripheral-type benzodiazepine receptor-mediated action of steroidogenic acute regulatory protein on cholesterol entry into leydig cell mitochondria. Molecular Endocrinology 19 540554. (https://doi.org/10.1210/me.2004-0307)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Holm C, Kirchgessner TG, Svenson KL, Fredrikson G, Nilsson S, Miller CG, Shively JE, Heinzmann C, Sparkes RS & Mohandas T 1988 Hormone-sensitive lipase: sequence, expression, and chromosomal localization to 19 cent-q13.3. Science 241 15031506. (https://doi.org/10.1126/science.3420405)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jurkiewicz P, Melser S, Maucourt M, Ayeb H, Veljanovski V, Maneta-Peyret L, Hooks M, Rolin D, Moreau P & Batoko H 2018 The multistress-induced translocator protein (TSPO) differentially modulates storage lipids metabolism in seeds and seedlings. Plant Journal 96 274286. (https://doi.org/10.1111/tpj.14028)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim T & Pae AN 2016a Translocator protein (TSPO) ligands for the diagnosis or treatment of neurodegenerative diseases: a patent review (2010–2015; part 2) Expert Opinion on Therapeutic Patents 26 13531366. (https://doi.org/10.1080/13543776.2016.1230605)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim T & Pae AN 2016b Translocator protein (TSPO) ligands for the diagnosis or treatment of neurodegenerative diseases: a patent review (2010–2015; part 1) Expert Opinion on Therapeutic Patents 26 13251351. (https://doi.org/10.1080/13543776.2016.1230606)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim S, Kim N, Park S, Jeon Y, Lee J, Yoo SJ, Lee JW, Moon C, Yu SW & Kim EK 2020 Tanycytic TSPO inhibition induces lipophagy to regulate lipid metabolism and improve energy balance. Autophagy 16 12001220. (https://doi.org/10.1080/15548627.2019.1659616)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Klee K, Storti F, Barben M, Samardzija M, Langmann T, Dunaief J & Grimm C 2019 Systemic knockout of Tspo in mice does not affect retinal morphology, function and susceptibility to degeneration. Experimental Eye Research 188 107816. (https://doi.org/10.1016/j.exer.2019.107816)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Krueger KE & Papadopoulos V 1990 Peripheral-type benzodiazepine receptors mediate translocation of cholesterol from outer to inner mitochondrial membranes in adrenocortical cells. Journal of Biological Chemistry 265 1501515022.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leduc MS, Hageman RS, Verdugo RA, Tsaih SW, Walsh K, Churchill GA & Paigen B 2011 Integration of QTL and bioinformatic tools to identify candidate genes for triglycerides in mice. Journal of Lipid Research 52 16721682. (https://doi.org/10.1194/jlr.M011130)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lehoux JG & Lefebvre A 1980 De novo synthesis of corticosteroids in hamster adrenal glands. Journal of Steroid Biochemistry 12 479485. (https://doi.org/10.1016/0022-4731(80)90310-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lin WL & Nadakavukaren MJ 1981 Harderian gland lipids of male and female golden hamsters. Comparative Biochemistry and Physiology Part B 70 627630. (https://doi.org/10.1016/0305-0491(81)90308-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu GJ, Middleton RJ, Hatty CR, Kam WWY, Chan R, Pham T, Harrison-Brown M, Dodson E, Veale K & Banati RB 2014 The 18 kDa translocator protein, microglia and neuroinflammation. Brain Pathology 24 631653. (https://doi.org/10.1111/bpa.12196)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu GJ, Middleton RJ, Kam WWY, Chin DY, Hatty CR, Chan RHY & Banati RB 2017 Functional gains in energy and cell metabolism after TSPO gene insertion. Cell Cycle 16 436447. (https://doi.org/10.1080/15384101.2017.1281477)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Livak KJ & Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25 402408. (https://doi.org/10.1006/meth.2001.1262)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McEnery MW, Snowman AM, Trifiletti RR & Snyder SH 1992 Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. PNAS 89 31703174. (https://doi.org/10.1073/pnas.89.8.3170)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Meikle AW, Cardoso De Sousa JC, Hanzalova J & Murray DK 1996 Oleic acid inhibits cholesteryl esterase and cholesterol utilization for testosterone synthesis in mouse Leydig cells. Metabolism: Clinical and Experimental 45 293299. (https://doi.org/10.1016/S0026-0495(96)90281-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Milenkovic VM, Slim D, Bader S, Koch V, Heinl ES, Alvarez-Carbonell D, Nothdurfter C, Rupprecht R & Wetzel CH 2019 CRISPR-cas9 mediated TSPO gene knockout alters respiration and cellular metabolism in human primary microglia cells. International Journal of Molecular Sciences 20 3359. (https://doi.org/10.3390/ijms20133359)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miller WL & Bose HS 2011 Early steps in steroidogenesis: intracellular cholesterol trafficking. Journal of Lipid Research 52 21112135. (https://doi.org/10.1194/jlr.R016675)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Morohaku K, Phuong NS & Selvaraj V 2013 Developmental expression of translocator protein/peripheral benzodiazepine receptor in reproductive tissues. PLoS ONE 8 e74509. (https://doi.org/10.1371/journal.pone.0074509)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Morohaku K, Pelton SH, Daugherty DJ, Butler WR, Deng W & Selvaraj V 2014 Translocator protein/peripheral benzodiazepine receptor is not required for steroid hormone biosynthesis. Endocrinology 155 8997. (https://doi.org/10.1210/en.2013-1556)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mukhin AG, Papadopoulos V, Costa E & Krueger KE 1989 Mitochondrial benzodiazepine receptors regulate steroid biosynthesis. PNAS 86 98139816. (https://doi.org/10.1073/pnas.86.24.9813)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Papadopoulos V, Mukhin AG, Costa E & Krueger KE 1990 The peripheral-type benzodiazepine receptor is functionally linked to Leydig cell steroidogenesis. Journal of Biological Chemistry 265 37723779.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Papadopoulos V, Amri H, Li H, Boujrad N, Vidic B & Garnier M 1997a Targeted disruption of the peripheral-type benzodiazepine receptor gene inhibits steroidogenesis in the R2C Leydig tumor cell line. Journal of Biological Chemistry 272 3212932135. (https://doi.org/10.1074/jbc.272.51.32129)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Papadopoulos V, Amri H, Boujrad N, Cascio C, Culty M, Garnier M, Hardwick M, Li H, Vidic B, Brown AS, et al.1997b Peripheral benzodiazepine receptor in cholesterol transport and steroidogenesis. Steroids 62 2128. (https://doi.org/10.1016/S0039-128X(96)00154-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Payne AP 1994 The harderian gland: a tercentennial review. Journal of Anatomy 185 149.

  • Prasad M, Kaur J, Pawlak KJ, Bose M, Whittal RM & Bose HS 2015 Mitochondria-associated endoplasmic reticulum membrane (MAM) regulates steroidogenic activity via steroidogenic acute regulatory protein (StAR)-voltage-dependent anion channel 2 (VDAC2) interaction. Journal of Biological Chemistry 290 26042616. (https://doi.org/10.1074/jbc.M114.605808)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rajapaksha M, Kaur J, Bose M, Whittal RM & Bose HS 2013 Cholesterol-mediated conformational changes in the steroidogenic acute regulatory protein are essential for steroidogenesis. Biochemistry 52 72427253. (https://doi.org/10.1021/bi401125v)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N, Groyer G, Adams D & Schumacher M 2010 Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nature Reviews: Drug Discovery 9 971988. (https://doi.org/10.1038/nrd3295)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sarel I & Widmaier EP 1995 Stimulation of steroidogenesis in cultured rat adrenocortical cells by unsaturated fatty acids. American Journal of Physiology 268 R1484R1490. (https://doi.org/10.1152/ajpregu.1995.268.6.R1484)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Selvaraj V & Stocco DM 2015 The changing landscape in translocator protein (TSPO) function. Trends in Endocrinology and Metabolism 26 341348. (https://doi.org/10.1016/j.tem.2015.02.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Selvaraj V & Stocco DM 2018 Letter to the editor: dubious conclusions on TSPO function. Endocrinology 159 25282529. (https://doi.org/10.1210/en.2018-00052)

  • Selvaraj V & Tu LN 2016 Current status and future perspectives: TSPO in steroid neuroendocrinology. Journal of Endocrinology 231 R1R30. (https://doi.org/10.1530/JOE-16-0241)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Selvaraj V, Stocco DM & Tu LN 2015 Minireview: translocator protein (TSPO) and steroidogenesis: a reappraisal. Molecular Endocrinology 29 490501. (https://doi.org/10.1210/me.2015-1033)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Selvaraj V, Tu LN & Stocco DM 2016 Crucial role reported for TSPO in viability and steroidogenesis is a misconception. Commentary: conditional steroidogenic cell-targeted deletion of TSPO unveils a crucial role in viability and hormone-dependent steroid formation. Frontiers in Endocrinology 7 91. (https://doi.org/10.3389/fendo.2016.00091)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Šileikyte J, Blachly-Dyson E, Sewell R, Carpi A, Menabò R, Di Lisa F, Ricchelli F, Bernardi P & Forte M 2014 Regulation of the mitochondrial permeability transition pore by the outer membrane does not involve the peripheral benzodiazepine receptor (translocator protein of 18 kDa (TSPO)). Journal of Biological Chemistry 289 1376913781. (https://doi.org/10.1074/jbc.M114.549634)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Singh A, Dashnyam M, Chim B, Escobar TM, Dulcey AE, Hu X, Wilson KM, Koganti PP, Spinner CA, Xu X, et al.2020 Anxiolytic drug FGIN-1-27 ameliorates autoimmunity by metabolic reprogramming of pathogenic Th17 cells. Scientific Reports 10 3766. (https://doi.org/10.1038/s41598-020-60610-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Spady DK & Dietschy JM 1985 Rates of cholesterol synthesis and low-density lipoprotein uptake in the adrenal glands of the rat, hamster and rabbit in vivo. Biochimica et Biophysica Acta 836 167175. (https://doi.org/10.1016/0005-2760(85)90063-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stocco DM & Clark BJ 1996 Regulation of the acute production of steroids in steroidogenic cells. Endocrine Reviews 17 221244. (https://doi.org/10.1210/edrv-17-3-221)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stocco DM, Zhao AH, Tu LN, Morohaku K & Selvaraj V 2017 A brief history of the search for the protein(s) involved in the acute regulation of steroidogenesis. Molecular and Cellular Endocrinology 441 716. (https://doi.org/10.1016/j.mce.2016.07.036)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tu LN, Morohaku K, Manna PR, Pelton SH, Butler WR, Stocco DM & Selvaraj V 2014 Peripheral benzodiazepine receptor/translocator protein global knock-out mice are viable with no effects on steroid hormone biosynthesis. Journal of Biological Chemistry 289 2744427454. (https://doi.org/10.1074/jbc.M114.578286)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tu LN, Zhao AH, Stocco DM & Selvaraj V 2015 PK11195 effect on steroidogenesis is not mediated through the translocator protein (TSPO). Endocrinology 156 10331039. (https://doi.org/10.1210/en.2014-1707)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tu LN, Zhao AH, Hussein M, Stocco DM & Selvaraj V 2016 Translocator protein (TSPO) affects mitochondrial fatty acid oxidation in steroidogenic cells. Endocrinology 157 11101121. (https://doi.org/10.1210/en.2015-1795)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tvrzická E, Řezanka T, Krijt J & Janoušek V 1988 Identification of very-long-chain fatty acids in rat and mouse harderian gland lipids by capillary gas chromatography-mass spectrometry. Journal of Chromatography 431 231238. (https://doi.org/10.1016/S0378-4347(00)83092-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vahouny GV, Chanderbhan R, Hinds R, Hodges VA & Treadwell CR 1978 ACTH-induced hydrolysis of cholesteryl esters in rat adrenal cells. Journal of Lipid Research 19 570577.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Verma A, Nye JS & Snyder SH 1987 Porphyrins are endogenous ligands for the mitochondrial (peripheral-type) benzodiazepine receptor. PNAS 84 22562260. (https://doi.org/10.1073/pnas.84.8.2256)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang HJ, Fan J & Papadopoulos V 2012 Translocator protein (Tspo) gene promoter-driven green fluorescent protein synthesis in transgenic mice: an in vivo model to study Tspo transcription. Cell and Tissue Research 350 261275. (https://doi.org/10.1007/s00441-012-1478-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang H, Zhai K, Xue Y, Yang J, Yang Q, Fu Y, Hu Y, Liu F, Wang W, Cui L, et al.2016 Global deletion of TSPO does not affect the viability and gene expression profile. PLoS ONE 11 e0167307. (https://doi.org/10.1371/journal.pone.0167307)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Woodhouse MA & Rhodin JAG 1963 The ultrastructure of the harderian gland of the mouse with particular reference to the formation of its secretory product. Journal of Ultrastructure Research 49 7698. (https://doi.org/10.1016/S0022-5320(63)80037-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhao AH, Tu LN, Mukai C, Sirivelu MP, Pillai VV, Morohaku K, Cohen R & Selvaraj V 2016 Mitochondrial translocator protein (TSPO) function is not essential for heme biosynthesis. Journal of Biological Chemistry 291 15911603. (https://doi.org/10.1074/jbc.M115.686360)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zoller LC & Malamed S 1975 Acute effects of ACTH on dissociated adrenocortical cells: quantitative changes in mitochondria and lipid droplets. Anatomical Record 182 473478. (https://doi.org/10.1002/ar.1091820406)

    • PubMed
    • Search Google Scholar
    • Export Citation