The role of testosterone in the respiratory and thermal responses to hypoxia and hypercapnia in rats

in Journal of Endocrinology
View More View Less
  • 1 Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
  • 2 Brain & Breathing Science Laboratory, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Canada
  • 3 Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais – UFMG, Belo Horizonte, Minas Gerais, Brazil

Correspondence should be addressed to L H Gargaglioni: luciane.gargaglioni@unesp.br
Restricted access

Many diseases of the respiratory system occur differently in males and females, indicating a possible role of gonadal hormones in respiratory control. We hypothesized that testosterone (T) is important for the ventilatory chemosensitivity responses in males. To test this hypothesis, we evaluated ventilation (E), metabolic rate and body temperature (Tb) under normoxia/normocapnia, hypercapnia and hypoxia in orchiectomized (ORX), ORX with testosterone replacement (ORX+T) or flutamide (FL, androgen receptor blocker)-treated rats. We also performed immunohistochemistry to evaluate the presence of androgen receptor (AR) in the carotid body (CB) of intact males. Orchiectomy promoted a reduction V̇E and ventilatory equivalent (E/V̇O 2) under room-air conditions, which was restored with testosterone treatment. Moreover, during hypoxia or hypercapnia, animals that received testosterone replacement had a higher E and E/V̇O 2 than control and ORX, without changes in metabolic and thermal variables. Flutamide decreased the hypoxic ventilatory response without changing the CO2-drive to breathe, suggesting that the testosterone effect on hypercapnic hyperventilation does not appear to involve the AR. We also determined the presence of AR in the CB of intact animals. Our findings demonstrate that testosterone seems to be important for maintaining resting E in males. In addition, the influence of testosterone on E, either during resting conditions or under hypoxia and hypercapnia, seems to be a direct and specific effect, as no changes in metabolic rate or Tb were observed during any treatment. Finally, a putative site of testosterone action during hypoxia is the CB, since we detected the presence of AR in this structure.

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 85 85 85
Full Text Views 3 3 3
PDF Downloads 0 0 0
  • Ahuja D, Mateika JH, Diamond MP & Safwan Badr MS 2007 Ventilatory sensitivity to carbon dioxide before and after episodic hypoxia in women treated with testosterone. Journal of Applied Physiology 102 18321838. (https://doi.org/10.1152/japplphysiol.01178.2006)

    • Search Google Scholar
    • Export Citation
  • Almeida MC, Steiner AA, Coimbra NC & Branco LG 2004 Thermoeffector neuronal pathways in fever: a study in rats showing a new role of the locus coeruleus. Journal of Physiology 558 283294. (https://doi.org/10.1113/jphysiol.2004.066654)

    • Search Google Scholar
    • Export Citation
  • Anderson RA, Evans LW, Irvine DS, McIntyre MA, Groome NP & Riley SC 1998 Follistatin and activin A production by the male reproductive tract. Human Reproduction 13 33193325. (https://doi.org/10.1093/humrep/13.12.3319)

    • Search Google Scholar
    • Export Citation
  • Bairam A, Montandon G, Joseph V, Lajeunesse Y & Kinkead R 2009 Enhancement of the breathing frequency response to hypoxia by neonatal caffeine treatment in adult male rats: the role of testosterone. Respiratory Physiology and Neurobiology 165 261265. (https://doi.org/10.1016/j.resp.2008.11.002)

    • Search Google Scholar
    • Export Citation
  • Bayliss DA, Millhorn DE, Gallman EA & Cidlowski JA 1987 Progesterone stimulates respiration through a central nervous system steroid receptor-mediated mechanism in cat. PNAS 84 77887792. (https://doi.org/10.1073/pnas.84.21.7788)

    • Search Google Scholar
    • Export Citation
  • Behan M & Kinkead R 2011 Neuronal control of breathing: sex and stress hormones. Comprehensive Physiology 1 21012139. (https://doi.org/10.1002/cphy.c100027)

    • Search Google Scholar
    • Export Citation
  • Behan M & Wenninger JM 2008 Sex steroidal hormones and respiratory control. Respiratory Physiology and Neurobiology 164 213221. (https://doi.org/10.1016/j.resp.2008.06.006)

    • Search Google Scholar
    • Export Citation
  • Biancardi V, Bícego KC, Almeida MC & Gargaglioni LH 2008 Locus coeruleus noradrenergic neurons and CO2 drive to breathing. Pflugers Archiv 455 11191128. (https://doi.org/10.1007/s00424-007-0338-8)

    • Search Google Scholar
    • Export Citation
  • Boukari R, Rossignol O, Marcouiller F, Bairam A & Joseph V 2016 Membrane progestrone receptors α and β contribute to regulation of breathing in adult male and female mice. American Thoracic Society 201 A2558. (https://doi.org/10.1152/japplphysiol.00397.2016)

    • Search Google Scholar
    • Export Citation
  • Canguven O & Albayrak S 2011 Do low testosterone levels contribute to the pathogenesis of asthma? Medical Hypotheses 76 585588. (https://doi.org/10.1016/j.mehy.2011.01.006)

    • Search Google Scholar
    • Export Citation
  • Chahrour M & Zoghbi HY 2007 The story of Rett syndrome: from clinic to neurobiology. Neuron 56 422437. (https://doi.org/10.1016/j.neuron.2007.10.001)

    • Search Google Scholar
    • Export Citation
  • Chowdhuri S, Bascom A, Mohan D, Diamond MP & Badr MS 2013 Testosterone conversion blockade increases breathing stability in healthy men during NREM sleep. Sleep 36 17931798. (https://doi.org/10.5665/sleep.3202)

    • Search Google Scholar
    • Export Citation
  • Davis GK, Intapad S, Newsome AD, Coats LE, Bamrick DR, Ojeda NB & Alexander BT 2019 Androgen receptor blockade differentially regulates blood pressure in growth-restricted versus ovarian deficient rats. Hypertension 74 975982. (https://doi.org/10.1161/HYPERTENSIONAHA.119.13257)

    • Search Google Scholar
    • Export Citation
  • de Carvalho D, Marques DAAD, Bernuci MPP, Leite CMM, Araújo-Lopes R, Anselmo-Franci J, Bícego KCC, Szawka REE & Gargaglioni LHH 2016 Role of sex hormones in hypercapnia-induced activation of the locus coeruleus in female and male rats. Neuroscience 313 3645. (https://doi.org/10.1016/j.neuroscience.2015.11.026)

    • Search Google Scholar
    • Export Citation
  • Dorrington JH & Fritz IB 1975 Cellular localization of 5α-reductase and 3α-hydroxysteroid dehydrogenase in the seminiferous tubule of the rat testis. Endocrinology 96 879889. (https://doi.org/10.1210/endo-96-4-879)

    • Search Google Scholar
    • Export Citation
  • Drorbaugh JE & Fenn WO 1955 A barometric method for measuring ventilation in newborn infants. Pediatrics 16 8187.

  • Emery MJ, Hlastala MP & Matsumoto AM 1994 Depression of hypercapnic ventilatory drive by testosterone in the sleeping infant primate. Journal of Applied Physiology 76 17861793. (https://doi.org/10.1152/jappl.1994.76.4.1786)

    • Search Google Scholar
    • Export Citation
  • Fogel RB, Malhotra A, Pillar G, Pittman SD, Dunaif A & White DP 2001 Increased prevalence of obstructive sleep apnea syndrome in obese women with polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism 86 11751180. (https://doi.org/10.1210/jcem.86.3.7316)

    • Search Google Scholar
    • Export Citation
  • Folman Y, Haltmeyer GC & Eik-Nes KB 1972 Production and secretion of 5 alfa dihydrotestosterone by the dog testis. American Journal of Physiology 222 653656. (https://doi.org/10.1152/ajplegacy.1972.222.3.653)

    • Search Google Scholar
    • Export Citation
  • Forum of International Respiratory Societies 2017 The global impact of respiratory disease – second edition. Sheffield, UK: European Respiratory Society. (available at: https://www.who.int/gard/publications/The_Global_Impact_of_Respiratory_Disease.pdf)

    • Search Google Scholar
    • Export Citation
  • Fournier S, Gulemetova R, Joseph V & Kinkead R 2014 Testosterone potentiates the hypoxic ventilatory response of adult male rats subjected to neonatal stress. Experimental Physiology 99 824834. (https://doi.org/10.1113/expphysiol.2013.077073)

    • Search Google Scholar
    • Export Citation
  • Gargaglioni LH, Hartzler LK & Putnam RW 2010 The locus coeruleus and central chemosensitivity. Respiratory Physiology & Neurobiology 173 264273. (https://doi.org/10.1016/j.resp.2010.04.024)

    • Search Google Scholar
    • Export Citation
  • Gargaglioni LH, Marques DA & Patrone LGA 2019 Sex differences in breathing. Comparative Biochemistry and Physiology: Part A, Molecular and Integrative Physiology 238 110543. (https://doi.org/10.1016/j.cbpa.2019.110543)

    • Search Google Scholar
    • Export Citation
  • Gonzales GF, Tapia V, Gasco M & Gonzales-Castañeda C 2011 Serum testosterone levels and score of chronic mountain sickness in Peruvian men natives at 4340m. Andrologia 43 189195. (https://doi.org/10.1111/j.1439-0272.2010.01046.x)

    • Search Google Scholar
    • Export Citation
  • Hamson DK, Jones BA & Watson NV 2004 Distribution of androgen receptor immunoreactivity in the brainstem of male rats. Neuroscience 127 797803. (https://doi.org/10.1016/J.NEUROSCIENCE.2004.06.006)

    • Search Google Scholar
    • Export Citation
  • Joseph V, Soliz J, Soria R, Pequignot J, Favier R, Spielvogel H & Pequignot JM 2002 Dopaminergic metabolism in carotid bodies and high-altitude acclimatization in female rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 282 R765R773. (https://doi.org/10.1152/ajpregu.00398.2001)

    • Search Google Scholar
    • Export Citation
  • Joseph V, Doan VD, Morency C-EE, Lajeunesse Y & Bairam A 2006 Expression of sex-steroid receptors and steroidogenic enzymes in the carotid body of adult and newborn male rats. Brain Research 1073–1074 7182. (https://doi.org/10.1016/j.brainres.2005.12.075)

    • Search Google Scholar
    • Export Citation
  • Kalil B, Leite CM, Carvalho-Lima M & Anselmo-Franci JA 2013 Role of sex steroids in progesterone and corticosterone response to acute restraint stress in rats: sex differences. Stress 16 452460. (https://doi.org/10.3109/10253890.2013.777832)

    • Search Google Scholar
    • Export Citation
  • Kaparianos A, Argyropoulou E, Efremidis G & Spiropoulos K 2011 Sex hormone alterations and systemic inflammation in a group of male COPD smokers and their correlation with the +138 insA/delA endothelin-1 gene polymorphism. A case-control study. European Review for Medical and Pharmacological Sciences 15 11491157.

    • Search Google Scholar
    • Export Citation
  • Kapsimalis F & Kryger MH 2002 Gender and obstructive sleep apnea syndrome, Part 1: clinical features. Sleep 25 412419. (https://doi.org/10.1093/sleep/25.4.409)

    • Search Google Scholar
    • Export Citation
  • Koepchen HP 1953 Effect of cortisone and testosterone on respiration. Pflugers Archiv 257 144154. (https://doi.org/10.1007/BF00412468)

    • Search Google Scholar
    • Export Citation
  • Liu PY & Veldhuis JD 2018 Hypothalamo-pituitary unit, testis, and male accessory organs. In Yen and Jaffe’s Reproductive Endocrinology: Physiology, Pathophysiology, and Clinical Management, 8th ed., pp. 285300.e8. Amsterdam, Netherlands: Elsevier. (https://doi.org/10.1016/B978-0-323-47912-7.00012-3)

    • Search Google Scholar
    • Export Citation
  • Lopes LT, Patrone LG, Bícego KC, Coimbra NC & Gargaglioni LH 2012 Periaqueductal gray matter modulates the hypercapnic ventilatory response. Pflugers Archiv 464 155166 (https://doi.org/10.1007/s00424-012-1119-6)

    • Search Google Scholar
    • Export Citation
  • Lozo T, Komnenov D, Badr MS & Mateika JH 2017 Sex differences in sleep disordered breathing in adults. Respiratory Physiology and Neurobiology 245 6575. (https://doi.org/10.1016/j.resp.2016.11.001)

    • Search Google Scholar
    • Export Citation
  • Marques DA, de Carvalho D, da Silva GSF, Szawka RE, Anselmo-Franci JA, Bícego KC & Gargaglioni LH 2015 Ventilatory, metabolic, and thermal responses to hypercapnia in female rats: effects of estrous cycle, ovariectomy, and hormonal replacement. Journal of Applied Physiology 119 6168. (https://doi.org/10.1152/japplphysiol.00254.2015)

    • Search Google Scholar
    • Export Citation
  • Marques DA, de Carvalho D, da Silva GSF, Szawka RE, Anselmo-Franci JA, Bícego KC & Gargaglioni LH 2017 Influence of estrous cycle hormonal fluctuations and gonadal hormones on the ventilatory response to hypoxia in female rats. Pflugers Archiv 469 12771286. (https://doi.org/10.1007/s00424-017-2022-y)

    • Search Google Scholar
    • Export Citation
  • Mateika JH, Mendello C, Obeid D & Badr MS 2004 Peripheral chemoreflex responsiveness is increased at elevated levels of carbon dioxide after episodic hypoxia in awake humans. Journal of Applied Physiology 96 11971205; discussion 1196. (https://doi.org/10.1152/japplphysiol.00573.2003)

    • Search Google Scholar
    • Export Citation
  • Matsumoto AM, Sandblom RE, Schoene RB, Lee KA, Giblin EC, Pierson DJ & Bremner WJ 1985 Testosterone replacement in hypogonadal men: effects on obstructive sleep apnoea, respiratory drives, and sleep. Clinical Endocrinology 22 713721. (https://doi.org/10.1111/j.1365-2265.1985.tb00161.x)

    • Search Google Scholar
    • Export Citation
  • Matuszczak E, Hermanowicz A, Komarowska M & Debek W 2013 Serum AMH in physiology and pathology of male gonads. International Journal of Endocrinology 2013 128907. (https://doi.org/10.1155/2013/128907)

    • Search Google Scholar
    • Export Citation
  • Mayerhofer A, Danilchik M, Pau KY, Lara HE, Russell LD & Ojeda SR 1996 Testis of prepubertal rhesus monkeys receives a dual catecholaminergic input provided by the extrinsic innervation and an intragonadal source of catecholamines. Biology of Reproduction 55 509518. (https://doi.org/10.1095/biolreprod55.3.509)

    • Search Google Scholar
    • Export Citation
  • Pascual O, Morin-Surun MP, Barna B, Denavit-Saubié M, Pequignot JM & Champagnat J 2002 Progesterone reverses the neuronal responses to hypoxia in rat nucleus tractus solitarius in vitro. Journal of Physiology 544 511520. (https://doi.org/10.1113/jphysiol.2002.023994)

    • Search Google Scholar
    • Export Citation
  • Raurich JM, Ibañez J & Marse P 1989 Validation of a new closed circuit indirect calorimetry method compared with the open Douglas bag method. Intensive Care Medicine 15 274278. (https://doi.org/10.1007/BF00271067)

    • Search Google Scholar
    • Export Citation
  • Reckelhoff JF, Zhang H, Srivastava K & Granger JP 1999 Androgens and androgen receptor gender differences in hypertension in spontaneously hypertensive rats: role of. Hypertension 34 920923. (https://doi.org/10.1161/01.HYP.34.4.920)

    • Search Google Scholar
    • Export Citation
  • Russell N & Grossmann M 2019 MECHANISMS IN ENDOCRINOLOGY: Estradiol as a male hormone. European Journal of Endocrinology 181 R23R43. (https://doi.org/10.1530/EJE-18-1000)

    • Search Google Scholar
    • Export Citation
  • Samy TSA, Zheng R, Matsutani T, Rue LW, Bland KI & Chaudry IH 2003 Mechanism for normal splenic T lymphocyte functions in proestrus females after trauma: enhanced local synthesis of 17??-estradiol. American Journal of Physiology: Cell Physiology 285 C139C149. (https://doi.org/10.1152/ajpcell.00058.2003)

    • Search Google Scholar
    • Export Citation
  • Scarpellini C da S, Gargaglioni LH, Branco LGS & Bícego KC 2009 Role of preoptic opioid receptors in the body temperature reduction during hypoxia. Brain Research 1286 6674. (https://doi.org/10.1016/j.brainres.2009.06.039)

    • Search Google Scholar
    • Export Citation
  • Schneider BK, Pickett CK, Zwillich CW, Weil JV, McDermott MT, Santen RJ, Varano LA & White DP 1986 Influence of testosterone on breathing during sleep. Journal of Applied Physiology 61 618623. (https://doi.org/10.1152/jappl.1986.61.2.618)

    • Search Google Scholar
    • Export Citation
  • Schols AM, Soeters PB, Mostert R, Pluymers RJ & Wouters EF 1995 Physiologic effects of nutritional support and anabolic steroids in patients with chronic obstructive pulmonary disease. A placebo-controlled randomized trial. American Journal of Respiratory and Critical Care Medicine 152 12681274. (https://doi.org/10.1164/ajrccm.152.4.7551381)

    • Search Google Scholar
    • Export Citation
  • Silva NL & Boulant JA 1986 Effects of testosterone, estradiol, and temperature on neurons in preoptic tissue slices. American Journal of Physiology 250 R625R632. (https://doi.org/10.1152/ajpregu.1986.250.4.R625)

    • Search Google Scholar
    • Export Citation
  • Simerly RB, Chang C, Muramatsu M & Swanson LW 1990 Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study. Journal of Comparative Neurology 294 7695. (https://doi.org/10.1002/cne.902940107)

    • Search Google Scholar
    • Export Citation
  • Simpson ER, Clyne C, Rubin G, Boon WC, Robertson K, Britt K, Speed C & Jones M 2002 Aromatase – a brief overview. Annual Review of Physiology 64 93127. (https://doi.org/10.1146/annurev.physiol.64.081601.142703)

    • Search Google Scholar
    • Export Citation
  • Steers WD 2001 5α-Reductase activity in the prostate. Urology 58 (Supplement 1) 1724; discussion 24. (https://doi.org/10.1016/S0090-4295(01)01299-7)

    • Search Google Scholar
    • Export Citation
  • Swift-Gallant A, Coome LA, Ramzan F & Monks DA 2016 Nonneural androgen receptors affect sexual differentiation of brain and behavior. Endocrinology 157 788798. (https://doi.org/10.1210/en.2015-1355)

    • Search Google Scholar
    • Export Citation
  • Szawka RE, Rodovalho GV, Monteiro PM, Carrer HF & Anselmo-Franci JA 2009 Ovarian-steroid modulation of locus coeruleus activity in female rats: involvement in luteinising hormone regulation. Journal of Neuroendocrinology 21 629639. (https://doi.org/10.1111/j.1365-2826.2009.01880.x)

    • Search Google Scholar
    • Export Citation
  • Tatsumi K, Hannhart B, Pickett CK, Weil JV & Moore LG 1994 Effects of testosterone on hypoxic ventilatory and carotid body neural responsiveness. American Journal of Respiratory and Critical Care Medicine 149 12481253. (https://doi.org/10.1164/ajrccm.149.5.8173766)

    • Search Google Scholar
    • Export Citation
  • Tenorio-Lopes L, Henry MS, Marques D, Tremblay , Drolet G, Bretzner F & Kinkead R 2017 Neonatal maternal separation opposes the facilitatory effect of castration on the respiratory response to hypercapnia of the adult male rat: evidence for the involvement of the medial amygdala. Journal of Neuroendocrinology 29 e12550. (https://doi.org/10.1111/jne.12550)

    • Search Google Scholar
    • Export Citation
  • Thomas P 2019 Membrane androgen receptors unrelated to nuclear steroid receptors. Endocrinology 160 772781. (https://doi.org/10.1210/en.2018-00987)

    • Search Google Scholar
    • Export Citation
  • Torlakovic EE, Francis G, Garratt J, Gilks B, Hyjek E, Ibrahim M, Miller R, Nielsen S, Petcu EB, Swanson PE, 2014 Standardization of negative controls in diagnostic immunohistochemistry: recommendations from the international ad hoc expert panel. Applied Immunohistochemistry and Molecular Morphology 22 241252. (https://doi.org/10.1097/PAI.0000000000000069)

    • Search Google Scholar
    • Export Citation
  • Vornberger W, Prins G, Musto NA & Suarez-Quian CA 1994 Androgen receptor distribution in rat testis: new implications for androgen regulation of spermatogenesis. Endocrinology 134 23072316. (https://doi.org/10.1210/endo.134.5.8156934)

    • Search Google Scholar
    • Export Citation
  • White DP, Schneider BK, Santen RJ, McDermott M, Pickett CK, Zwillich CW & Weil JV 1985 Influence of testosterone on ventilation and chemosensitivity in male subjects. Journal of Applied Physiology 59 14521457. (https://doi.org/10.1152/jappl.1985.59.5.1452)

    • Search Google Scholar
    • Export Citation
  • Ying SY 1988 Inhibins, activins, and follistatins: gonadal proteins modulating the secretion of follicle-stimulating hormone. Endocrine Reviews 9 267293. (https://doi.org/10.1210/edrv-9-2-267)

    • Search Google Scholar
    • Export Citation
  • Zabka AG, Mitchell GS & Behan M 2006 Conversion from testosterone to oestradiol is required to modulate respiratory long-term facilitation in male rats. Journal of Physiology 576 903912. (https://doi.org/10.1113/jphysiol.2006.114850)

    • Search Google Scholar
    • Export Citation