11β-Hydroxylase loss disrupts steroidogenesis and reproductive function in zebrafish

in Journal of Endocrinology
View More View Less
  • 1 Department of Oncology & Metabolism, School of Medicine, University of Sheffield, Sheffield, UK
  • 2 The Bateson Centre, Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield, UK
  • 3 Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
  • 4 Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany

Correspondence should be addressed to N P Krone: N.Krone@sheffield.ac.uk
Restricted access

The roles of androgens in male reproductive development and function in zebrafish are poorly understood. To investigate this topic, we employed CRISPR/Cas9 to generate cyp11c1 (11β-hydroxylase) mutant zebrafish lines. Our study confirms recently published findings from a different cyp11c1−/− mutant zebrafish line, and also reports novel aspects of the phenotype caused by loss of Cyp11c1 function. We report that Cyp11c1-deficient zebrafish display predominantly female secondary sex characteristics, but may possess either ovaries or testes. Moreover, we observed that cyp11c1−/− mutant male zebrafish are profoundly androgen- and cortisol-deficient. These results provide further evidence that androgens are dispensable for testis formation in zebrafish, as has been demonstrated previously in androgen-deficient and androgen-resistant zebrafish. Herein, we show that the testes of cyp11c1−/− mutant zebrafish exhibit a disorganised tubular structure; and for the first time demonstrate that the spermatic ducts, which connect the testes to the urogenital orifice, are severely hypoplastic in androgen-deficient zebrafish. Furthermore, we show that spermatogenesis and characteristic breeding behaviours are impaired in cyp11c1−/ mutant zebrafish. Expression of nanos2, a type A spermatogonia marker, was significantly increased in the testes of Cyp11c1-deficient zebrafish, whereas expression of markers for later stages of spermatogenesis was significantly decreased. These observations indicate that in zebrafish, production of type A spermatogonia is androgen-independent, but differentiation of type A spermatogonia is an androgen-dependent process. Overall, our results demonstrate that whilst androgens are not required for testis formation, they play important roles in determining secondary sexual characteristics, proper organisation of seminiferous tubules, and differentiation of male germ cells.

Supplementary Materials

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 211 211 211
Full Text Views 31 31 31
PDF Downloads 15 15 15
  • Andersen L, Holbech H, Gessbo A, Norrgren L & Petersen GI 2003 Effects of exposure to 17alpha-ethinylestradiol during early development on sexual differentiation and induction of vitellogenin in zebrafish (Danio rerio). Comparative Biochemistry and Physiology: Toxicology and Pharmacology 134 3653 74. (https://doi.org/10.1016/s1532-0456(0300006-1)

    • Search Google Scholar
    • Export Citation
  • Assis LHC, Crespo D, Morais RDVS, França LR, Bogerd J & Schulz RW 2016 INSL3 stimulates spermatogonial differentiation in testis of adult zebrafish (Danio rerio). Cell and Tissue Research 363 579588. (https://doi.org/10.1007/s00441-015-2213-9)

    • Search Google Scholar
    • Export Citation
  • Baker ME, Nelson DR & Studer RA 2015 Origin of the response to adrenal and sex steroids: roles of promiscuity and co-evolution of enzymes and steroid receptors. Journal of Steroid Biochemistry and Molecular Biology 151 1224. (https://doi.org/10.1016/j.jsbmb.2014.10.020)

    • Search Google Scholar
    • Export Citation
  • Barbaro M, Oscarson M, Almskog I, Hamberg H & Wedell A 2007 Complete androgen insensitivity without Wolffian duct development: the AR-A form of the androgen receptor is not sufficient for male genital development. Clinical Endocrinology 66 82282 6. (https://doi.org/10.1111/j.1365-2265.2007.02819.x)

    • Search Google Scholar
    • Export Citation
  • Beer RL & Draper BW 2013 nanos3 maintains germline stem cells and expression of the conserved germline stem cell gene nanos2 in the zebrafish ovary. Developmental Biology 374 3083 18. (https://doi.org/10.1016/j.ydbio.2012.12.003)

    • Search Google Scholar
    • Export Citation
  • Brion F, Tyler CR, Palazzi X, Laillet B, Porcher JM, Garric J & Flammarion P 2004 Impacts of 17beta-estradiol, including environmentally relevant concentrations, on reproduction after exposure during embryo-larval-, juvenile- and adult-life stages in zebrafish (Danio rerio). Aquatic Toxicology 68 193217. (https://doi.org/10.1016/j.aquatox.2004.01.022)

    • Search Google Scholar
    • Export Citation
  • Cai K, Hua G, Ahmad S, Liang A, Han L, Wu C, Yang F & Yang L 2011 Action mechanism of inhibin α-subunit on the development of sertoli cells and first wave of spermatogenesis in mice. PLoS ONE 6 e25585. (https://doi.org/10.1371/journal.pone.0025585)

    • Search Google Scholar
    • Export Citation
  • Caulier M, Brion F, Chadili E, Turies C, Piccini B, Porcher JM, Guiguen Y & Hinfray N 2015 Localization of steroidogenic enzymes and Foxl2a in the gonads of mature zebrafish (Danio rerio). Comparative Biochemistry and Physiology: Part A, Molecular and Integrative Physiology 188 96106. (https://doi.org/10.1016/j.cbpa.2015.06.016)

    • Search Google Scholar
    • Export Citation
  • Chen SX, Bogerd J, Schoonen NE, Martijn J, De Waal PP & Schulz RW 2013 A progestin (17alpha,20beta-dihydroxy-4-pregnen-3-one) stimulates early stages of spermatogenesis in zebrafish. General and Comparative Endocrinology 185 19. (https://doi.org/10.1016/j.ygcen.2013.01.005)

    • Search Google Scholar
    • Export Citation
  • Crowder CM, Lassiter CS & Gorelick DA 2018 Nuclear androgen receptor regulates testes organization and oocyte maturation in zebrafish. Endocrinology 159 980993. (https://doi.org/10.1210/en.2017-00617)

    • Search Google Scholar
    • Export Citation
  • De Waal PP, Wang DS, Nijenhuis WA, Schulz RW & Bogerd J 2008 Functional characterization and expression analysis of the androgen receptor in zebrafish (Danio rerio) testis. Reproduction 136 2252 34. (https://doi.org/10.1530/REP-08-0055)

    • Search Google Scholar
    • Export Citation
  • Eachus H, Zaucker A, Oakes JA, Griffin A, Weger M, Guran T, Taylor A, Harris A, Greenfield A & Quanson JL et al. 2017 Genetic disruption of 21-hydroxylase in zebrafish causes interrenal hyperplasia. Endocrinology 158 41654173. (https://doi.org/10.1210/en.2017-00549)

    • Search Google Scholar
    • Export Citation
  • Fetter E, Smetanova S, Baldauf L, Lidzba A, Altenburger R, Schuttler A & Scholz S 2015 Identification and characterization of androgen-responsive genes in zebrafish embryos. Environmental Science and Technology 49 11789117 98. (https://doi.org/10.1021/acs.est.5b01034)

    • Search Google Scholar
    • Export Citation
  • Gregory SJ & Kaiser UB 2004 Regulation of gonadotropins by inhibin and activin. Seminars in Reproductive Medicine 22 2532 67. (https://doi.org/10.1055/s-2004-831901)

    • Search Google Scholar
    • Export Citation
  • Griffin A, Parajes S, Weger M, Zaucker A, Taylor AE, O’Neil DM, Muller F & Krone N 2016 Ferredoxin 1b (Fdx1b) is the essential mitochondrial redox partner for cortisol biosynthesis in zebrafish. Endocrinology 157 112211 34. (https://doi.org/10.1210/en.2015-1480)

    • Search Google Scholar
    • Export Citation
  • Hannema SE, Scott IS, Rajpert-De Meyts E, Skakkebaek NE, Coleman N & Hughes IA 2006 Testicular development in the complete androgen insensitivity syndrome. Journal of Pathology 208 5185 27. (https://doi.org/10.1002/path.1890)

    • Search Google Scholar
    • Export Citation
  • Larsen MG & Baatrup E 2010 Functional behavior and reproduction in androgenic sex reversed zebrafish (Danio rerio). Environmental Toxicology and Chemistry 29 182818 33. (https://doi.org/10.1002/etc.214)

    • Search Google Scholar
    • Export Citation
  • Lau ES, Zhang Z, Qin M & Ge W 2016 Knockout of zebrafish ovarian aromatase gene (cyp19a1a) by TALEN and CRISPR/Cas9 leads to all-male offspring due to failed ovarian differentiation. Scientific Reports 6 37357. (https://doi.org/10.1038/srep37357)

    • Search Google Scholar
    • Export Citation
  • Lee SLJ, Horsfield JA, Black MA, Rutherford K, Fisher A & Gemmell NJ 2017 Histological and transcriptomic effects of 17alpha-methyltestosterone on zebrafish gonad development. BMC Genomics 18 557. (https://doi.org/10.1186/s12864-017-3915-z)

    • Search Google Scholar
    • Export Citation
  • Li N, Oakes JA, Storbeck KH, Cunliffe VT & Krone NP 2020 The P450 side chain cleavage enzyme Cyp11a2 facilitates steroidogenesis in zebrafish. Journal of Endocrinology 244 309321. (https://doi.org/10.1530/JOE-19-0384)

    • Search Google Scholar
    • Export Citation
  • Liew WC, Bartfai R, Lim Z, Sreenivasan R, Siegfried KR & Orban L 2012 Polygenic sex determination system in zebrafish. PLoS ONE 7 e34397. (https://doi.org/10.1371/journal.pone.0034397)

    • Search Google Scholar
    • Export Citation
  • Livak KJ & Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25 40240 8. (https://doi.org/10.1006/meth.2001.1262)

    • Search Google Scholar
    • Export Citation
  • Matthews JL, Murphy JM, Carmichael C, Yang H, Tiersch T, Westerfield M & Varga ZM 2018 Changes to extender, cryoprotective medium, and in vitro fertilization improve zebrafish sperm cryopreservation. Zebrafish 15 279290. (https://doi.org/10.1089/zeb.2017.1521)

    • Search Google Scholar
    • Export Citation
  • Menke AL, Spitsbergen JM, Wolterbeek AP & Woutersen RA 2011 Normal anatomy and histology of the adult zebrafish. Toxicologic Pathology 39 7597 7 5. (https://doi.org/10.1177/0192623311409597)

    • Search Google Scholar
    • Export Citation
  • Miller WL & Auchus RJ 2011 The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocrine Reviews 32 81151. (https://doi.org/10.1210/er.2010-0013)

    • Search Google Scholar
    • Export Citation
  • Morais RDVS, Crespo D, Nobrega RH, Lemos MS, Van De Kant HJG, De Franca LR, Male R, Bogerd J & Schulz RW 2017 Antagonistic regulation of spermatogonial differentiation in zebrafish (Danio rerio) by Igf3 and Amh. Molecular and Cellular Endocrinology 454 112124. (https://doi.org/10.1016/j.mce.2017.06.017)

    • Search Google Scholar
    • Export Citation
  • Morthorst JE, Holbech H & Bjerregaard P 2010 Trenbolone causes irreversible masculinization of zebrafish at environmentally relevant concentrations. Aquatic Toxicology 98 3363 43. (https://doi.org/10.1016/j.aquatox.2010.03.008)

    • Search Google Scholar
    • Export Citation
  • Nakamoto M, Suzuki A, Matsuda M, Nagahama Y & Shibata N 2005 Testicular type Sox9 is not involved in sex determination but might be in the development of testicular structures in the medaka, Oryzias latipes. Biochemical and Biophysical Research Communications 333 7297 36. (https://doi.org/10.1016/j.bbrc.2005.05.158)

    • Search Google Scholar
    • Export Citation
  • Nobrega RH, Morais RD, Crespo D, De Waal PP, De Franca LR, Schulz RW & Bogerd J 2015 Fsh stimulates spermatogonial proliferation and differentiation in zebrafish via Igf3. Endocrinology 156 380438 17. (https://doi.org/10.1210/en.2015-1157)

    • Search Google Scholar
    • Export Citation
  • Oakes JA, Li N, Wistow BRC, Griffin A, Barnard L, Storbeck KH, Cunliffe VT & Krone NP 2019 Ferredoxin 1b deficiency leads to testis disorganization, impaired spermatogenesis and feminization in zebrafish. Endocrinology 160 24012416. (https://doi.org/10.1210/en.2019-00068)

    • Search Google Scholar
    • Export Citation
  • O’Reilly MW, Kempegowda P, Jenkinson C, Taylor AE, Quanson JL, Storbeck KH & Arlt W 2017 11-Oxygenated C19 steroids are the predominant androgens in polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism 102 840848. (https://doi.org/10.1210/jc.2016-3285)

    • Search Google Scholar
    • Export Citation
  • Orn S, Holbech H & Norrgren L 2016 Sexual disruption in zebrafish (Danio rerio) exposed to mixtures of 17alpha-ethinylestradiol and 17beta-trenbolone. Environmental Toxicology and Pharmacology 41 2252 31. (https://doi.org/10.1016/j.etap.2015.12.010)

    • Search Google Scholar
    • Export Citation
  • Ozaki Y, Saito K, Shinya M, Kawasaki T & Sakai N 2011 Evaluation of Sycp3, Plzf and cyclin B3 expression and suitability as spermatogonia and spermatocyte markers in zebrafish. Gene Expression Patterns 11 3093 15. (https://doi.org/10.1016/j.gep.2011.03.002)

    • Search Google Scholar
    • Export Citation
  • Page SL & Hawley RS 2004 The genetics and molecular biology of the synaptonemal complex. Annual Review of Cell and Developmental Biology 20 5255 5 8. (https://doi.org/10.1146/annurev.cellbio.19.111301.155141)

    • Search Google Scholar
    • Export Citation
  • Poon SK, So WK, Yu X, Liu L & Ge W 2009 Characterization of inhibin alpha subunit (Inha) in the zebrafish: evidence for a potential feedback loop between the pituitary and ovary. Reproduction 138 7097 19. (https://doi.org/10.1530/REP-09-0198)

    • Search Google Scholar
    • Export Citation
  • Safian D, Morais RD, Bogerd J & Schulz RW 2016 Igf binding proteins protect undifferentiated spermatogonia in the zebrafish testis against excessive differentiation. Endocrinology 157 44234433. (https://doi.org/10.1210/en.2016-1315)

    • Search Google Scholar
    • Export Citation
  • Schiffer L, Anderko S, Hannemann F, Eiden-Plach A & Bernhardt R 2015 The CYP11B subfamily. Journal of Steroid Biochemistry and Molecular Biology 151 3851. (https://doi.org/10.1016/j.jsbmb.2014.10.011)

    • Search Google Scholar
    • Export Citation
  • Shaw G & Renfree MB 2014 Wolffian duct development. Sexual Development 8 2732 80. (https://doi.org/10.1159/000363432)

  • Siegenthaler PF, Zhao Y, Zhang K & Fent K 2017 Reproductive and transcriptional effects of the antiandrogenic progestin chlormadinone acetate in zebrafish (Danio rerio). Environmental Pollution 223 346356. (https://doi.org/10.1016/j.envpol.2017.01.031)

    • Search Google Scholar
    • Export Citation
  • Sun D, Zhang Y, Wang C, Hua X, Zhang XA & Yan J 2013 Sox9-related signaling controls zebrafish juvenile ovary-testis transformation. Cell Death and Disease 4 e930. (https://doi.org/10.1038/cddis.2013.456)

    • Search Google Scholar
    • Export Citation
  • Syrjänen JL, Pellegrini L & Davies OR 2014 A molecular model for the role of SYCP3 in meiotic chromosome organisation. eLife 3 e02963. (https://doi.org/10.7554/eLife.02963)

    • Search Google Scholar
    • Export Citation
  • Tang H, Chen Y, Wang L, Yin Y, Li G, Guo Y, Liu Y, Lin H, Cheng CHK & Liu X 2018 Fertility impairment with defective spermatogenesis and steroidogenesis in male zebrafish lacking androgen receptor. Biology of Reproduction 98 227238. (https://doi.org/10.1093/biolre/iox165)

    • Search Google Scholar
    • Export Citation
  • Tokarz J, Moller G, Hrabe De Angelis M & Adamski J 2015 Steroids in teleost fishes: a functional point of view. Steroids 103 1231 44. (https://doi.org/10.1016/j.steroids.2015.06.011)

    • Search Google Scholar
    • Export Citation
  • Uchida D, Yamashita M, Kitano T & Iguchi T 2002 Oocyte apoptosis during the transition from ovary-like tissue to testes during sex differentiation of juvenile zebrafish. Journal of Experimental Biology 205 71171 8.

    • Search Google Scholar
    • Export Citation
  • Van Der Ven L & Wester P 2003 Histology and Histopathology Atlas of the Zebrafish. Bilthoven, Netherlands: National Institute of Public Health and the Environment of the Netherlands (RIVM). (available at: https://zfin.org/hh_atlas/)

    • Search Google Scholar
    • Export Citation
  • Wang XG, Bartfai R, Sleptsova-Freidrich I & Orban L 2007 The timing and extent of ‘juvenile ovary’ phase are highly variable during zebrafish testis differentiation. Journal of Fish Biology 70 3344. (https://doi.org/10.1111/j.1095-8649.2007.01363.x)

    • Search Google Scholar
    • Export Citation
  • Webster KA, Schach U, Ordaz A, Steinfeld JS, Draper BW & Siegfried KR 2017 Dmrt1 is necessary for male sexual development in zebrafish. Developmental Biology 422 3346. (https://doi.org/10.1016/j.ydbio.2016.12.008)

    • Search Google Scholar
    • Export Citation
  • Westerfield M 2000 The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio), 4th ed. Eugene, OR, USA: University of Oregon Press.

    • Search Google Scholar
    • Export Citation
  • Yano A, Suzuki K & Yoshizaki G 2008 Flow-cytometric isolation of testicular germ cells from rainbow trout (Oncorhynchus mykiss) carrying the green fluorescent protein gene driven by trout vasa regulatory regions. Biology of Reproduction 78 15115 8. (https://doi.org/10.1095/biolreprod.107.064667)

    • Search Google Scholar
    • Export Citation
  • Yeh S, Tsai M-Y, Xu Q, Mu X-M, Lardy H, Huang K-E, Lin H, Yeh S-D, Altuwaijri S & Zhou X et al. 2002 Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues. PNAS 99 13498–13503. (https://doi.org/10.1073/pnas.212474399)

    • Search Google Scholar
    • Export Citation
  • Yin Y, Tang H, Liu Y, Chen Y, Li G, Liu X & Lin H 2017 Targeted disruption of aromatase reveals dual functions of cyp19a1a during sex differentiation in zebrafish. Endocrinology 158 30303041. (https://doi.org/10.1210/en.2016-1865)

    • Search Google Scholar
    • Export Citation
  • Yong L, Thet Z & Zhu Y 2017 Genetic editing of the androgen receptor contributes to impaired male courtship behavior in zebrafish. Journal of Experimental Biology 220 30173021. (https://doi.org/10.1242/jeb.161596)

    • Search Google Scholar
    • Export Citation
  • Yu G, Zhang D, Liu W, Wang J, Liu X, Zhou C, Gui J & Xiao W 2018 Zebrafish androgen receptor is required for spermatogenesis and maintenance of ovarian function. Oncotarget 9 2432024334. (https://doi.org/10.18632/oncotarget.24407)

    • Search Google Scholar
    • Export Citation
  • Zhai G, Shu T, Xia Y, Lu Y, Shang G, Jin X, He J, Nie P & Yin Z 2018 Characterization of sexual trait development in cyp17a1-deficient zebrafish. Endocrinology 159 35493562. (https://doi.org/10.1210/en.2018-00551)

    • Search Google Scholar
    • Export Citation
  • Zhang Q, Ye D, Wang H, Wang Y, Hu W & Sun Y 2020 Zebrafish cyp11c1 knockout reveals the roles of 11-ketotestosterone and cortisol in sexual development and reproduction. Endocrinology 161 bqaa048. (https://doi.org/10.1210/endocr/bqaa048)

    • Search Google Scholar
    • Export Citation
  • Ziv L, Muto A, Schoonheim PJ, Meijsing SH, Strasser D, Ingraham HA, Schaaf MJ, Yamamoto KR & Baier H 2013 An affective disorder in zebrafish with mutation of the glucocorticoid receptor. Molecular Psychiatry 18 6816 91. (https://doi.org/10.1038/mp.2012.64)

    • Search Google Scholar
    • Export Citation