Strength exercise reduces hepatic pyruvate carboxylase and gluconeogenesis in DIO mice

in Journal of Endocrinology
View More View Less
  • 1 Exercise Cell Biology Lab, Faculty of Applied Sciences, State University of Campinas, Limeira, Brazil
  • 2 Laboratory of Nutritional Genomics, Faculty of Applied Sciences, State University of Campinas, Limeira, Brazil
  • 3 Multidisciplinary Laboratory of Food and Health, State University of Campinas, Faculty of Applied Sciences, Limeira, Brazil
  • 4 School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
  • 5 Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, USP, Ribeirão Preto, São Paulo, Brazil
  • 6 Laboratory of Molecular Biology of Exercise (LaBMEx), Faculty of Applied Sciences, State University of Campinas (UNICAMP), Limeira, São Paulo, Brazil

Correspondence should be addressed to L P de Moura: mouralp@unicamp.br

*(R M Pereira and K C C Rodrigues contributed equally to this work)

Restricted access

Obesity is linked to a reduction in the control of hepatic glucose production, which is the primary mechanism related to fasting hyperglycemia and the development of type 2 diabetes mellitus (T2DM). The main system involved in hepatic gluconeogenesis synthesis is controlled by pyruvate carboxylase (PC), which increases in obesity conditions. Recently, we showed that short-term strength training is an important tool against obesity-induced hyperglycemia. As aerobic exercise can reduce the hepatic PC content of obese animals, we hypothesized that strength exercise can also decrease this gluconeogenic enzyme. Therefore, this study investigated whether the metabolic benefits promoted by short-term strength training are related to changes in hepatic PC content. Swiss mice were divided into three groups: lean control (Ctl), obese sedentary (ObS), and obese short-term strength training (STST). The STST protocol was performed through one session/day for 15 days. The obese exercised animals had reduced hyperglycemia and insulin resistance. These results were related to better control of hepatic glucose production and hepatic insulin sensitivity. Our bioinformatics analysis showed that hepatic PC mRNA levels have positive correlations with glucose levels and adiposity, and negative correlations with locomotor activity and muscle mass. We also found that hepatic mRNA levels are related to lipogenic markers in the liver. Finally, we observed that the obese animals had an increased hepatic PC level; however, STST was efficient in reducing its amount. In conclusion, we provide insights into new biomolecular mechanisms by showing how STST is an efficient tool against obesity-related hyperglycemia and T2DM, even without body weight changes.

Supplementary Materials

    • Supplementary Table 1. Antibody information
    • Supplementary Figure 1
    • Supplementary Figure 2
    • Supplementary Figure 3

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 312 312 267
Full Text Views 33 33 30
PDF Downloads 13 13 11
  • Andreux PA, Williams EG, Koutnikova H, Houtkooper RH, Champy MF, Henry H, Schoonjans K, Williams RW & Auwerx J 2012 Systems genetics of metabolism: the use of the BXD murine reference panel for multiscalar integration of traits. Cell 150 12871299. (https://doi.org/10.1016/j.cell.2012.08.012)

    • Search Google Scholar
    • Export Citation
  • Bacchi E, Negri C, Targher G, Faccioli N, Lanza M, Zoppini G, Zanolin E, Schena F, Bonora E & Moghetti P 2013 Both resistance training and aerobic training reduce hepatic fat content in type 2 diabetic subjects with nonalcoholic fatty liver disease (the RAED2 Randomized Trial). Hepatology 58 12871295. (https://doi.org/10.1002/hep.26393)

    • Search Google Scholar
    • Export Citation
  • Basu R, Chandramouli V, Dicke B, Landau B & Rizza R 2005 Obesity and type 2 diabetes impair insulin-induced suppression of glycogenolysis as well as gluconeogenesis. Diabetes 54 19421948. (https://doi.org/10.2337/diabetes.54.7.1942)

    • Search Google Scholar
    • Export Citation
  • Bonora E, Moghetti P, Zancanaro C, Cigolini M, Querena M, Cacciatori V, Corgnati A & Muggeo M 1989 Estimates of in vivo insulin action in man: comparison of insulin tolerance tests with euglycemic and hyperglycemic glucose clamp studies. Journal of Clinical Endocrinology and Metabolism 68 374378. (https://doi.org/10.1210/jcem-68-2-374)

    • Search Google Scholar
    • Export Citation
  • Boyle JP, Thompson TJ, Gregg EW, Barker LE & Williamson DF 2010 Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Population Health Metrics 8 29. (https://doi.org/10.1186/1478-7954-8-29)

    • Search Google Scholar
    • Export Citation
  • Domingos MM, Rodrigues MFC, Stotzer US, Bertucci DR, Souza MVC, Marine DA, Gatto Cdo V, de Araújo HSS & de Andrade Perez SE 2012 Resistance training restores the gene expression of molecules related to fat oxidation and lipogenesis in the liver of ovariectomized rats. European Journal of Applied Physiology 112 14371444. (https://doi.org/10.1007/s00421-011-2098-6)

    • Search Google Scholar
    • Export Citation
  • dos Santos GF, Veras ASC, de Freitas MC, McCabe J, Seraphim PM & Teixeira GR 2019 Strength training reduces lipid accumulation in liver of obese Wistar rats. Life Sciences 235 116834. (https://doi.org/10.1016/j.lfs.2019.116834)

    • Search Google Scholar
    • Export Citation
  • Foretz M, Guigas B & Viollet B 2019 Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nature Reviews: Endocrinology 15 569589. (https://doi.org/10.1038/s41574-019-0242-2)

    • Search Google Scholar
    • Export Citation
  • Gastaldelli A, Baldi S, Pettiti M, Toschi E, Camastra S, Natali A, Landau BR & Ferrannini E 2000 Influence of obesity and type 2 diabetes on gluconeogenesis and glucose output in humans: a quantitative study. Diabetes 49 13671373. (https://doi.org/10.2337/diabetes.49.8.1367)

    • Search Google Scholar
    • Export Citation
  • Honka MJ, Bucci M, Andersson J, Huovinen V, Guzzardi MA, Sandboge S, Savisto N, Salonen MK, Badeau RM & Parkkola R et al. 2016 Resistance training enhances insulin suppression of endogenous glucose production in elderly women. Journal of Applied Physiology 120 633639. (https://doi.org/10.1152/japplphysiol.00950.2015)

    • Search Google Scholar
    • Export Citation
  • Jitrapakdee S, St Maurice M, Rayment I, Cleland WW, Wallace JC & Attwood PV 2008 Structure, mechanism and regulation of pyruvate carboxylase. Biochemical Journal 413 369387. (https://doi.org/10.1042/BJ20080709)

    • Search Google Scholar
    • Export Citation
  • Klimcakova E, Polak J, Moro C, Hejnova J, Majercik M, Viguerie N, Berlan M, Langin D & Stich V 2006 Dynamic strength training improves insulin sensitivity without altering plasma levels and gene expression of adipokines in subcutaneous adipose tissue in obese men. Journal of Clinical Endocrinology and Metabolism 91 51075112. (https://doi.org/10.1210/jc.2006-0382)

    • Search Google Scholar
    • Export Citation
  • Kubota T, Kubota N & Kadowaki T 2017 Imbalanced insulin actions in obesity and type 2 diabetes: key mouse models of insulin signaling pathway. Cell Metabolism 25 797810. (https://doi.org/10.1016/j.cmet.2017.03.004)

    • Search Google Scholar
    • Export Citation
  • Kumashiro N, Beddow SA, Vatner DF, Majumdar SK, Cantley JL, Guebre-Egziabher F, Fat I, Guigni B, Jurczak MJ & Birkenfeld AL et al. 2013 Targeting pyruvate carboxylase reduces gluconeogenesis and adiposity and improves insulin resistance. Diabetes 62 21832194. (https://doi.org/10.2337/db12-1311)

    • Search Google Scholar
    • Export Citation
  • Magnusson I, Rothman DL, Katz LD, Shulman RG & Shulman GI 1992 Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. Journal of Clinical Investigation 90 13231327. (https://doi.org/10.1172/JCI115997)

    • Search Google Scholar
    • Export Citation
  • Marinho R, Ropelle ER, Cintra DE, De Souza CT, Da Silva ASR, Bertoli FC, Colantonio E, D’Almeida V & Pauli JR 2012 Endurance exercise training increases APPL1 expression and improves insulin signaling in the hepatic tissue of diet-induced obese mice, independently of weight loss. Journal of Cellular Physiology 227 29172926. (https://doi.org/10.1002/jcp.23037)

    • Search Google Scholar
    • Export Citation
  • Matthews JN, Altman DG, Campbell MJ & Royston P 1990 Analysis of serial measurements in medical research. BMJ 300 230235. (https://doi.org/10.1136/bmj.300.6719.230)

    • Search Google Scholar
    • Export Citation
  • McGilvery RW & Mokrasch LC 1956 Purification and properties of fructose-1, 6-diphosphatase. Journal of Biological Chemistry 221 909917.

  • Muñoz VR, Gaspar RC, Crisol BM, Formigari GP, Sant’Ana MR, Botezelli JD, Gaspar RS, da Silva ASR, Cintra DE & de Moura LP et al. 2018 Physical exercise reduces pyruvate carboxylase (PCB) and contributes to hyperglycemia reduction in obese mice. Journ al of Physiological Sciences 68 493501. (https://doi.org/10.1007/s12576-017-0559-3)

    • Search Google Scholar
    • Export Citation
  • Oliveira AG, Carvalho BM, Tobar N, Ropelle ER, Pauli JR, Bagarolli RA, Guadagnini D, Carvalheira JB & Saad MJ 2011 Physical exercise reduces circulating lipopolysaccharide and TLR4 activation and improves insulin signaling in tissues of DIO rats. Diabetes 60 784796. (https://doi.org/10.2337/db09-1907)

    • Search Google Scholar
    • Export Citation
  • Oliveira V, Marinho R, Vitorino D, Santos GA, Moraes JC, Dragano N, Sartori-Cintra A, Pereira L, Catharino RR & da Silva ASR et al. 2015 Diets containing α-linolenic (ω3) or oleic (ω9) fatty acids rescues obese mice from insulin resistance. Endocrinology 156 40334046. (https://doi.org/10.1210/en.2014-1880)

    • Search Google Scholar
    • Export Citation
  • Patel BM & Goyal RK 2019 Liver and insulin resistance: new wine in old bottle!!! European Journal of Pharmacology 862 172657. (https://doi.org/10.1016/j.ejphar.2019.172657)

    • Search Google Scholar
    • Export Citation
  • Pereira RM, Botezelli JD, da Cruz Rodrigues KC, Mekary RA, Cintra DE, Pauli JR, da Silva ASR, Ropelle ER & de Moura LP 2017 Fructose consumption in the development of obesity and the effects of different protocols of physical exercise on the hepatic metabolism. Nutrients 9 405. (https://doi.org/10.3390/nu9040405)

    • Search Google Scholar
    • Export Citation
  • Pereira RM, Rodrigues KCDC, Anaruma CP, Sant’Ana MR, de Campos TDP, Gaspar RS, Canciglieri RDS, de Melo DG, Mekary RA & da Silva ASR et al. 2019 Short-term strength training reduces gluconeogenesis and NAFLD in obese mice. Journal of Endocrinology 241 5970. (https://doi.org/10.1530/JOE-18-0567)

    • Search Google Scholar
    • Export Citation
  • Perry RJ, Camporez J-PG, Kursawe R, Titchenell PM, Zhang D, Perry CJ, Jurczak MJ, Abudukadier A, Han MS & Zhang XM et al. 2015 Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160 745758. (https://doi.org/10.1016/j.cell.2015.01.012)

    • Search Google Scholar
    • Export Citation
  • Petersen MC & Shulman GI 2017 Roles of diacylglycerols and ceramides in hepatic insulin resistance. Trends in Pharmacological Sciences 38 649665. (https://doi.org/10.1016/j.tips.2017.04.004)

    • Search Google Scholar
    • Export Citation
  • Philip VM, Duvvuru S, Gomero B, Ansah TA, Blaha CD, Cook MN, Hamre KM, Lariviere WR, Matthews DB & Mittleman G et al. 2010 High-throughput behavioral phenotyping in the expanded panel of BXD recombinant inbred strains. Genes, Brain, and Behavior 9 129159. (https://doi.org/10.1111/j.1601-183X.2009.00540.x)

    • Search Google Scholar
    • Export Citation
  • Reeves PG, Nielsen FH & Fahey GC 1993 AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. Journal of Nutrition 123 19391951. (https://doi.org/10.1093/jn/123.11.1939)

    • Search Google Scholar
    • Export Citation
  • Roden M & Shulman GI 2019 The integrative biology of type 2 diabetes. Nature 576 5160. (https://doi.org/10.1038/s41586-019-1797-8)

  • Ropelle ER, Pauli JR, Cintra DE, Frederico MJS, De Pinho RA, Velloso LA & De Souza CT 2009 Acute exercise modulates the FoxO1/PGC-1α pathway in the liver of diet-induced obesity rats. Journal of Physiology 587 20692076. (https://doi.org/10.1113/jphysiol.2008.164202)

    • Search Google Scholar
    • Export Citation
  • Ross JM, Coppotelli G, Branca RM, Kim KM, Lehtiö J, Sinclair DA & Olson L 2019 Voluntary exercise normalizes the proteomic landscape in muscle and brain and improves the phenotype of progeroid mice. Aging Cell 18 e13029. (https://doi.org/10.1111/acel.13029)

    • Search Google Scholar
    • Export Citation
  • Samuel VT, Beddow SA, Iwasaki T, Zhang XM, Chu X, Still CD, Gerhard GS & Shulman GI 2009 Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with type 2 diabetes. PNAS 106 1212112126. (https://doi.org/10.1073/pnas.0812547106)

    • Search Google Scholar
    • Export Citation
  • Sargeant JA, Gray LJ, Bodicoat DH, Willis SA, Stensel DJ, Nimmo MA, Aithal GP & King JA 2018 The effect of exercise training on intrahepatic triglyceride and hepatic insulin sensitivity: a systematic review and meta-analysis. Obesity Reviews 19 14461459. (https://doi.org/10.1111/obr.12719)

    • Search Google Scholar
    • Export Citation
  • Tang L, Luo K, Liu C, Wang X, Zhang D, Chi A, Zhang J & Sun L 2014 Decrease in myostatin by ladder-climbing training is associated with insulin resistance in diet-induced obese rats. Chinese Medical Journal 127 23422349.

    • Search Google Scholar
    • Export Citation
  • Tilg H, Moschen AR & Roden M 2017 NAFLD and diabetes mellitus. Nature Reviews: Gastroenterology and Hepatology 14 3242. (https://doi.org/10.1038/nrgastro.2016.147)

    • Search Google Scholar
    • Export Citation
  • Utter MF & Keech DB 1960 Formation of oxaloacetate from pyruvate and carbon dioxide. Journal of Biological Chemistry 235 PC17PC18.

  • Walker JM 1994 The bicinchoninic acid (BCA) assay for protein quantitation. Methods in Molecular Biology 32 58. (https://doi.org/10.1385/0-89603-268-X:5)

    • Search Google Scholar
    • Export Citation
  • Weber G & Cantero A 1954 Glucose-6-phosphatase studies in fasting. Science 120 851852. (https://doi.org/10.1126/science.120.3125.851)

  • Weinberg MB & Utter MF 1980 Effect of streptozotocin-induced diabetes mellitus on the turnover of rat liver pyruvate carboxylase and pyruvate dehydrogenase. Biochemical Journal 188 601608. (https://doi.org/10.1042/bj1880601)

    • Search Google Scholar
    • Export Citation
  • Williams EG, Wu Y, Jha P, Dubuis S, Blattmann P, Argmann CA, Houten SM, Amariuta T, Wolski W & Zamboni N et al. 2016 Systems proteomics of liver mitochondria function. Science 352 aad0189. (https://doi.org/10.1126/science.aad0189)

    • Search Google Scholar
    • Export Citation
  • Xiao XH, Wang YD, Qi XY, Wang YY, Li JY, Li H, Zhang PY, Liao HL, Li MH & Liao ZZ et al. 2018 Zinc alpha2 glycoprotein protects against obesity-induced hepatic steatosis. International Journal of Obesity 42 14181430. (https://doi.org/10.1038/s41366-018-0151-9)

    • Search Google Scholar
    • Export Citation
  • Xu M, Ge C, Zhu L, Qin Y, Du C, Lou D, Li Q, Hu L, Sun Y & Dai X et al. 2020 iRhom2 promotes hepatic steatosis by activating MAP3K7‐dependent pathway. Hepatology [epub]. (https://doi.org/10.1002/hep.31436)

    • Search Google Scholar
    • Export Citation
  • Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR & Granner DK et al. 2001 Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413 131138. (https://doi.org/10.1038/35093050)

    • Search Google Scholar
    • Export Citation
  • Zhang X, Yang S, Chen J & Su Z 2018 Unraveling the regulation of hepatic gluconeogenesis. Frontiers in Endocrinology 9 802. (https://doi.org/10.3389/fendo.2018.00802)

    • Search Google Scholar
    • Export Citation