Prenatal androgen exposure affects ovarian lipid metabolism and steroid biosynthesis in rats

in Journal of Endocrinology
Authors:
Giselle Adriana Abruzzese Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina

Search for other papers by Giselle Adriana Abruzzese in
Current site
Google Scholar
PubMed
Close
,
Maria Florencia Heber Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina

Search for other papers by Maria Florencia Heber in
Current site
Google Scholar
PubMed
Close
,
Silvana Rocío Ferreira Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina

Search for other papers by Silvana Rocío Ferreira in
Current site
Google Scholar
PubMed
Close
,
María José Ferrer Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina

Search for other papers by María José Ferrer in
Current site
Google Scholar
PubMed
Close
, and
Alicia Beatriz Motta Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina

Search for other papers by Alicia Beatriz Motta in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to G A Abruzzese: giselleabruzzese@gmail.com
Restricted access
Rent on DeepDyve

Sign up for journal news

Prenatal androgen exposure affects reproductive functions and has been proposed as an underlying cause of polycystic ovary syndrome (PCOS). In this study, we aimed to investigate the impact of prenatal androgen exposure on ovarian lipid metabolism and to deepen our understanding of steroidogenesis regulation during adulthood. Pregnant rats were hyperandrogenized with testosterone and female offspring were studied when adult. This treatment leads to two different phenotypes: irregular ovulatory and anovulatory animals. Our results showed that prenatally hyperandrogenized (PH) animals displayed altered lipid and hormonal profile together with alterations in steroidogenesis and ovarian lipid metabolism. Moreover, PH animals showed alterations in the PPARg system, impaired mRNA levels of cholesterol receptors (Ldlr and Srb1) and decreased expression of the rate-limiting enzyme of de novo cholesterol production (Hmgcr). Anovulatory PH animals presented an increase of ovarian cholesteryl esters levels and lipid peroxidation index. Together with alterations in cholesterol metabolism, we found an impairment of the steroidogenic pathway in PH animals in a phenotype-specific manner. Regarding fatty acid metabolism, our results showed, in PH animals, an altered expression of Srebp1 and Atgl, which are involved in fatty acid metabolism and triglycerides hydrolysis, respectively. In conclusion, fatty acid and cholesterol metabolism, which are key players in steroidogenesis acting as a source of energy and substrate for steroid production, were affected in animals exposed to androgens during gestation. These results suggest that prenatal androgen exposure leads to long-term effects that affect ovary lipid metabolism and ovarian steroid formation from the very first steps.

 

  • Collapse
  • Expand
  • Abruzzese GA, Heber MF, Ferreira SR, Velez LM, Reynoso R, Pignataro OP & Motta AB 2016 Prenatal hyperandrogenism induces alterations that affect liver lipid metabolism. Journal of Endocrinology 230 6779. (https://doi.org/10.1530/JOE-15-0471)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Abruzzese GA, Heber MF, Campo Verde Arbocco F, Ferreira SR & Motta AB 2019a Fetal programming by androgen excess in rats affects ovarian fuel sensors and steroidogenesis. Journal of Developmental Origins of Health and Disease 10 645658. (https://doi.org/10.1017/S2040174419000126)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Abruzzese GA, Heber MF, Ferrer MJ, Ferreira SR, Silva AF & Motta AB 2019b Effects of in utero androgen excess and metformin treatment on hepatic functions. Molecular and Cellular Endocrinology 491 110416. (https://doi.org/10.1016/j.mce.2019.03.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A & Gupta S 2012 The effects of oxidative stress on female reproduction: a review. Reproductive Biology and Endocrinology 10 49. (https://doi.org/10.1186/1477-7827-10-49)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aiken CE, Tarry-Adkins JL & Ozanne SE 2013 Suboptimal nutrition in utero causes DNA damage and accelerated aging of the female reproductive tract. FASEB Journal 27 39593965. (https://doi.org/10.1096/fj.13-234484)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Alonso-Alvarez C, Bertrand S, Faivre B, Chastel O & Sorci G 2007 Testosterone and oxidative stress: the oxidation handicap hypothesis. Proceedings: Biological Sciences 274 819825. (https://doi.org/10.1098/rspb.2006.3764)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bligh EG & Dyer WJ 1959 A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37 911917. (https://doi.org/10.1139/o59-099)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Calabuig-Navarro V, Haghiac M, Minium J, Glazebrook P, Ranasinghe GC, Hoppel C, Hauguel de-Mouzon S, Catalano P & O’Tierney-Ginn P 2017 Effect of maternal obesity on placental lipid metabolism. Endocrinology 158 25432555. (https://doi.org/10.1210/en.2017-00152)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cao J, Maowulieti G & Yu T 2019 Effect of testosterone on the expression of PPARγ mRNA in PCOS patients. Experimental and Therapeutic Medicine 17 17611765. (https://doi.org/10.3892/etm.2018.7101)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cardoso RC & Padmanabhan V 2019 Prenatal steroids and metabolic dysfunction: lessons from sheep. Annual Review of Animal Biosciences 7 337360. (https://doi.org/10.1146/annurev-animal-020518-115154)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chang XL, Liu L, Wang N, Chen ZJ & Zhang C 2017 The function of high-density lipoprotein and low-density lipoprotein in the maintenance of mouse ovarian steroid balance. Biology of Reproduction 97 862872. (https://doi.org/10.1093/biolre/iox134)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen MJ, Chou CH, Chen SU, Yang WS, Yang YS & Ho HN 2015a The effect of androgens on ovarian follicle maturation: dihydrotestosterone suppress FSH-stimulated granulosa cell proliferation by upregulating PPARγ-dependent PTEN expression. Scientific Reports 5 18319. (https://doi.org/10.1038/srep18319)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen J, Shen S, Tan Y, Xia D, Xia Y, Cao Y, Wang W, Wu X, Wang H & Yi L et al.2015Wb The correlation of aromatase activity and obesity in women with or without polycystic ovary syndrome. Journal of Ovarian Research 8 11. (https://doi.org/10.1186/s13048-015-0139-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dallel S, Tauveron I, Brugnon F, Baron S, Lobaccaro JMA & Maqdasy S 2018 Liver X receptors: a possible link between lipid disorders and female infertility. International Journal of Molecular Sciences 19 2177. (https://doi.org/10.3390/ijms19082177)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Drummond AE 2006 The role of steroids in follicular growth. Reproductive Biology and Endocrinology 4 16. (https://doi.org/10.1186/1477-7827-4-16)

  • Dunning KR, Russell DL & Robker RL 2014 Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction 148 R15R27. (https://doi.org/10.1530/REP-13-0251)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dupont J, Bertoldo MJ & Rak A 2018 Energy sensors in female and male reproduction and fertility. International Journal of Endocrinology 2018 8285793. (https://doi.org/10.1155/2018/8285793)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Faul F, Erdfelder E, Lang AG & Buchner A 2007 G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods 39 175191. (https://doi.org/10.3758/bf03193146)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ferreira SR, Goyeneche AA, Heber MF, Abruzzese GA, Telleria CM & Motta AB 2020 Prenatally androgenized female rats develop uterine hyperplasia when adult. Molecular and Cellular Endocrinology 499 110610. (https://doi.org/10.1016/j.mce.2019.110610)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Franks S, Stark J & Hardy K 2008 Follicle dynamics and anovulation in polycystic ovary syndrome. Human Reproduction Update 14 367378. (https://doi.org/10.1093/humupd/dmn015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Friedewald WT, Levy RI & Fredrickson DS 1972 Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry 18 499502. (https://doi.org/10.1093/clinchem/18.6.499)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Froment P & Touraine P 2006 Thiazolidinediones and fertility in polycystic ovary syndrome (PCOS). PPAR Research 2006 73986. (https://doi.org/10.1155/PPAR/2006/73986)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guo T, Zhang L, Cheng D, Liu T, An L, Li WP & Zhang C 2015 Low-density lipoprotein receptor affects the fertility of female mice. Reproduction, Fertility, and Development 27 12221232. (https://doi.org/10.1071/RD13436)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Heber MF, Ferreira SR, Abruzzese GA, Raices T, Pignataro OP, Vega M & Motta AB 2019 Metformin improves ovarian insulin signaling alterations caused by fetal programming. Journal of Endocrinology 240 431443. (https://doi.org/10.1530/JOE-18-0520)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hu J, Zhang Z, Shen WJ & Azhar S 2010 Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutrition and Metabolism 7 47. (https://doi.org/10.1186/1743-7075-7-47)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kakuta H, Matsushita A, Arikawa K, Iguchi T & Sato T 2013 Cholesterol homeostasis in the ovaries of neonatally diethylstilbestrol-treated mice. Experimental and Clinical Endocrinology and Diabetes 121 94101. (https://doi.org/10.1055/s-0033-1333780)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim N, Nakamura H, Masaki H, Kumasawa K, Hirano KI & Kimura T 2017 Effect of lipid metabolism on male fertility. Biochemical and Biophysical Research Communications 485 686692. (https://doi.org/10.1016/j.bbrc.2017.02.103)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kurtz M, Capobianco E, Martínez N, Fernández J, Higa R, White V & Jawerbaum A 2010 Carbaprostacyclin, a PPARdelta agonist, ameliorates excess lipid accumulation in diabetic rat placentas. Life Sciences 86 781790. (https://doi.org/10.1016/j.lfs.2010.03.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lacau-Mengido IM, Libertun C & Becú-Villalobos D 1996 Different serotonin receptor types participate in 5-hydroxytryptophan-induced gonadotropins and prolactin release in the female infantile rat. Neuroendocrinology 63 415421. (https://doi.org/10.1159/000127089)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lai H, Jia X, Yu Q, Zhang C, Qiao J, Guan Y & Kang J 2014 High-fat diet induces significant metabolic disorders in a mouse model of polycystic ovary syndrome. Biology of Reproduction 91 127. (https://doi.org/10.1095/biolreprod.114.120063)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Langer C, Gansz B, Goepfert C, Engel T, Uehara Y, von Dehn G, Jansen H, Assmann G & von Eckardstein A 2002 Testosterone up-regulates scavenger receptor BI and stimulates cholesterol efflux from macrophages. Biochemical and Biophysical Research Communications 296 10511057. (https://doi.org/10.1016/s0006-291x(0202038-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li X & Ma X 2018 Effects of dyslipidemia on in-vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) pregnancy outcome in patients with polycystic ovary syndrome (PCOS). Fertility and Sterility 110 e198. (https://doi.org/10.1016/j.fertnstert.2018.07.576)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Livak KJ & Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25 402408. (https://doi.org/10.1006/meth.2001.1262)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lopez D, Sanchez MD, Shea-Eaton W & McLean MP 2002 Estrogen activates the high-density lipoprotein receptor gene via binding to estrogen response elements and interaction with sterol regulatory element binding protein-1A. Endocrinology 143 21552168. (https://doi.org/10.1210/endo.143.6.8855)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Meng Y, Lv PP, Ding GL, Yu TT, Liu Y, Shen Y, Hu XL, Lin XH, Tian S & Lv M et al.2015 High maternal serum estradiol levels induce dyslipidemia in human newborns via a hepatic HMGCR estrogen response element. Scientific Reports 5 10086. (https://doi.org/10.1038/srep10086)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miettinen HE, Rayburn H & Krieger M 2001 Abnormal lipoprotein metabolism and reversible female infertility in HDL receptor (SR-BI)-deficient mice. Journal of Clinical Investigation 108 17171722. (https://doi.org/10.1172/JCI13288)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Motta AB, Estevez A, Franchi A, Perez-Martinez S, Farina M, Ribeiro ML, Lasserre A & Gimeno MF 2001 Regulation of lipid peroxidation by nitric oxide and PGF2alpha during luteal regression in rats. Reproduction 121 631637. (https://doi.org/10.1530/rep.0.1210631)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ortega HH, Rey F, Velazquez MML & Padmanabhan V 2010 Developmental programming: effect of prenatal steroid excess on intraovarian components of insulin signaling pathway and related proteins in sheep. Biology of Reproduction 82 10651075. (https://doi.org/10.1095/biolreprod.109.082719)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ortega I, Sokalska A, Villanueva JA, Cress AB, Wong DH, Stener-Victorin E, Stanley SD & Duleba AJ 2013 Letrozole increases ovarian growth and Cyp17a1 gene expression in the rat ovary. Fertility and Sterility 99 889896. (https://doi.org/10.1016/j.fertnstert.2012.11.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Padmanabhan V & Veiga-Lopez A 2013 Animal models of the polycystic ovary syndrome phenotype. Steroids 78 734740. (https://doi.org/10.1016/j.steroids.2013.05.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Padmanabhan V, Salvetti NR, Matiller V & Ortega HH 2014 Developmental programming: prenatal steroid excess disrupts key members of intraovarian steroidogenic pathway in sheep. Endocrinology 155 36493660. (https://doi.org/10.1210/en.2014-1266)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Padmanabhan V, Cardoso RC & Puttabyatappa M 2016 Developmental programming, a pathway to disease. Endocrinology 157 13281340. (https://doi.org/10.1210/en.2016-1003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Puttabyatappa M & Padmanabhan V 2018 Developmental programming of ovarian functions and dysfunctions. In Vitamins and Hormones, pp. 377422. Amsterdam, Netherlands: Elsevier. (https://doi.org/10.1016/bs.vh.2018.01.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ramezani Tehrani F, Noroozzadeh M, Zahediasl S, Piryaei A, Hashemi S & Azizi F 2014 The time of prenatal androgen exposure affects development of polycystic ovary syndrome-like phenotype in adulthood in female rats. International Journal of Endocrinology and Metabolism 12 e16502. (https://doi.org/10.5812/ijem.16502)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Roberti SL, Higa R, White V, Powell TL, Jansson T & Jawerbaum A 2018 Critical role of mTOR, PPARγ and PPARδ signaling in regulating early pregnancy decidual function, embryo viability and feto-placental growth. Molecular Human Reproduction 24 327340. (https://doi.org/10.1093/molehr/gay013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Salilew-Wondim D, Wang Q, Tesfaye D, Schellander K, Hoelker M, Hossain MM & Tsang BK 2015 Polycystic ovarian syndrome is accompanied by repression of gene signatures associated with biosynthesis and metabolism of steroids, cholesterol and lipids. Journal of Ovarian Research 8 24. (https://doi.org/10.1186/s13048-015-0151-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sander VA, Hapon MB, Sícaro L, Lombardi EP, Jahn GA & Motta AB 2011 Alterations of folliculogenesis in women with polycystic ovary syndrome. Journal of Steroid Biochemistry and Molecular Biology 124 5864. (https://doi.org/10.1016/j.jsbmb.2011.01.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Silvestris E, de Pergola G, Rosania R & Loverro G 2018 Obesity as disruptor of the female fertility. Reproductive Biology and Endocrinology 16 22. (https://doi.org/10.1186/s12958-018-0336-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Singh P, Amin M, Keller E, Simerman A, Aguilera P, Briton-Jones C, Hill DL, Abbott DH, Chazenbalk G & Dumesic DA 2013 A novel approach to quantifying ovarian cell lipid content and lipid accumulation in vitro by confocal microscopy in lean women undergoing ovarian stimulation for in vitro fertilization (IVF). Journal of Assisted Reproduction and Genetics 30 733740. (https://doi.org/10.1007/s10815-013-9976-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Strauss JF 2019 Organization of ovarian steroidogenic cells and cholesterol metabolism. In The Ovary, pp. 8394. Amsterdam, Netherlands: Elsevier. (https://doi.org/10.1016/B978-0-12-813209-8.00005-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Trigatti B, Rayburn H, Viñals M, Braun A, Miettinen H, Penman M, Hertz M, Schrenzel M, Amigo L & Rigotti A et al.1999 Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. PNAS 96 93229327. (https://doi.org/10.1073/pnas.96.16.9322)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • van Montfoort APA, Plösch T, Hoek A & Tietge UJF 2014 Impact of maternal cholesterol metabolism on ovarian follicle development and fertility. Journal of Reproductive Immunology 104–105 3236. (https://doi.org/10.1016/j.jri.2014.04.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vélez LM, Abruzzese GA & Motta AB 2013 The biology of the peroxisome proliferator-activated receptor system in the female reproductive tract. Current Pharmaceutical Design 19 46414646. (https://doi.org/10.2174/1381612811319250010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang L & Menon KMJ 2005 Regulation of luteinizing hormone/chorionic gonadotropin receptor messenger ribonucleic acid expression in the rat ovary: relationship to cholesterol metabolism. Endocrinology 146 423431. (https://doi.org/10.1210/en.2004-0805)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wolf CJ, Hotchkiss A, Ostby JS, LeBlanc GA & Gray LE 2002 Effects of prenatal testosterone propionate on the sexual development of male and female rats: a dose-response study. Toxicological Sciences 65 7186. (https://doi.org/10.1093/toxsci/65.1.71)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu LL-Y, Dunning KR, Yang X, Russell DL, Lane M, Norman RJ & Robker RL 2010 High-fat diet causes lipotoxicity responses in cumulus-oocyte complexes and decreased fertilization rates. Endocrinology 151 54385445. (https://doi.org/10.1210/en.2010-0551)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu N, Taylor KD, Azziz R & Goodarzi MO 2010 Variants in the HMG-CoA reductase (HMGCR) gene influence component phenotypes in polycystic ovary syndrome. Fertility and Sterility 94 255 .e126 0.e1. (https://doi.org/10.1016/j.fertnstert.2009.01.158)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yan X, Yuan C, Zhao N, Cui Y & Liu J 2014 Prenatal androgen excess enhances stimulation of the GNRH pulse in pubertal female rats. Journal of Endocrinology 222 7385. (https://doi.org/10.1530/JOE-14-0021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yildirim B, Demir S, Temur I, Erdemir R & Kaleli B 2007 Lipid peroxidation in follicular fluid of women with polycystic ovary syndrome during assisted reproduction cycles. Journal of Reproductive Medicine 52 722726.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhu XD, Bonet B & Knopp RH 1997 17Beta-estradiol, progesterone, and testosterone inversely modulate low-density lipoprotein oxidation and cytotoxicity in cultured placental trophoblast and macrophages. American Journal of Obstetrics and Gynecology 177 196209. (https://doi.org/10.1016/s0002-9378(9770462-9)

    • PubMed
    • Search Google Scholar
    • Export Citation