A rise in T3/T4 ratio reduces the growth of prostate tumors in a murine model

in Journal of Endocrinology
View More View Less
  • 1 Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México

Correspondence should be addressed to B Anguiano: anguianoo@unam.mx

*(A Sanchez-Tusie and C Montes de Oca contributed equally to this work)

Restricted access

Thyroxine (T4) promotes cell proliferation and tumor growth in prostate cancer models, but it is unknown if the increase in the triiodothyronine (T3)/T4 ratio could attenuate prostate tumor development. We assessed T3 effects on thyroid response, histology, proliferation, and apoptosis in the prostate of wild-type (WT) and TRAMP (transgenic adenocarcinoma of the mouse prostate) mice. Physiological doses of T3 were administered in the drinking water (2.5, 5 and 15 µg/100 g body weight) for 6 weeks. None of the doses modified the body weight or serum levels of testosterone, but all of them reduced serum T4 levels by 50%, and the highest dose increased the T3/T4 ratio in TRAMP. In WT, the highest dose of T3 decreased cyclin D1 levels (immunohistochemistry) but did not modify prostate weight or alter the epithelial morphology. In TRAMP, this dose reduced tumor growth by antiproliferative mechanisms independent of apoptosis, but it did not modify the intraluminal or fibromuscular invasion of tumors. In vitro, in the LNCaP prostate cancer cell line, we found that both T3 and T4 increased the number of viable cells (Trypan blue assay), and only T4 response was fully blocked in the presence of an integrin-binding inhibitor peptide (RGD, arginine-glycine-aspartate). In summary, our data show that the prostate was highly sensitive to physiological T3 doses and suggest that in vivo, an increase in the T3/T4 ratio could be associated with the reduced weight of prostate tumors. Longitudinal studies are required to understand the role of thyroid hormones in prostate cancer progression.

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 333 333 228
Full Text Views 43 43 32
PDF Downloads 24 24 17
  • Ahuja D, Sáenz-Robles MT & Pipas JM 2005 SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene 24 77297745. (https://doi.org/10.1038/sj.onc.1209046)

    • Search Google Scholar
    • Export Citation
  • Anguiano B, López A, Delgado G, Romero C & Aceves C 2006 Deiodinase type 1 activity is expressed in the prostate of pubescent rats and is modulated by thyroid hormones, prolactin and sex hormones. Journal of Endocrinology 190 363371. (https://doi.org/10.1677/joe.1.06786)

    • Search Google Scholar
    • Export Citation
  • Baas D, Puymirat J & Sarlieve LL 1998 Posttranscriptional regulation of oligodendroglial thyroid hormone (T3) receptor β1 by T3. International Journal of Developmental Neuroscience 16 461467. (https://doi.org/10.1016/S0736-5748(9800053-7)

    • Search Google Scholar
    • Export Citation
  • Bergh JJ, Lin HY, Lansing L, Mohamed SN, Davis FB, Mousa S & Davis PJ 2005 Integrin alphaVbeta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 146 28642871. (https://doi.org/10.1210/en.2005-0102)

    • Search Google Scholar
    • Export Citation
  • Berman-Booty LD, Sargeant AM, Rosol TJ, Rengel RC, Clinton SK, Chen CS & Kulp SK 2012 A review of the existing grading schemes and a proposal for a modified grading scheme for prostatic lesions in TRAMP mice. Toxicologic Pathology 40 517. (https://doi.org/10.1177/0192623311425062)

    • Search Google Scholar
    • Export Citation
  • Berquin IM, Min Y, Wu R, Wu H & Chen YQ 2005 Expression signature of the mouse prostate. Journal of Biological Chemistry 280 3644236451. (https://doi.org/10.1074/jbc.M504945200)

    • Search Google Scholar
    • Export Citation
  • Chan YX, Knuiman MW, Divitini ML, Brown SJ, Walsh J & Yeap BB 2017 Lower TSH and higher free thyroxine predict incidence of prostate but not breast, colorectal or lung cancer. European Journal of Endocrinology 177 297308. (https://doi.org/10.1530/EJE-17-0197)

    • Search Google Scholar
    • Export Citation
  • Cooke PS & Meisami E 1991 Early hypothyroidism in rats causes increased adult testis and reproductive organ size but does not change testosterone levels. Endocrinology 129 237243. (https://doi.org/10.1210/endo-129-1-237)

    • Search Google Scholar
    • Export Citation
  • Davis PJ, Leonard JL, Lin HY, Leinung M & Mousa SA 2018 Molecular basis of nongenomic actions of thyroid hormone. Vitamins and Hormones 106 6796. (https://doi.org/10.1016/bs.vh.2017.06.001)

    • Search Google Scholar
    • Export Citation
  • Delgado-Gonzalez E, Aceves C & Anguiano B 2011 Postejaculatory increase of prostatic triiodothyronine (T3) depends on sympathetic innervation in the rat. Biology of Reproduction 84 118123. (https://doi.org/10.1095/biolreprod.110.086116)

    • Search Google Scholar
    • Export Citation
  • Delgado-González E, Sánchez-Tusie AA, Morales G, Aceves C & Anguiano B 2016 Triiodothyronine attenuates prostate cancer progression mediated by β-adrenergic stimulation. Molecular Medicine 22 111. (https://doi.org/10.2119/molmed.2015.00047)

    • Search Google Scholar
    • Export Citation
  • Esquenet M, Swinnen JV, Heyns W & Verhoeven G 1995 Triiodothyronine modulates growth, secretory function and androgen receptor concentration in the prostatic carcinoma cell line LNCaP. Molecular and Cellular Endocrinology 109 105111. (https://doi.org/10.1016/0303-7207(9503490-X)

    • Search Google Scholar
    • Export Citation
  • Garcia-Silva S, Perez-Juste G & Aranda A 2002 Cell cycle control by the thyroid hormone in neuroblastoma cells. Toxicology 181 –182 179182. (https://doi.org/10.1016/s0300-483x(0200277-9)

    • Search Google Scholar
    • Export Citation
  • Gingrich JR, Barrios RJ, Foster BA & Greenberg NM 1999 Pathologic progression of autochthonous prostate cancer in the TRAMP model. Prostate Cancer and Prostatic Diseases 2 7075. (https://doi.org/10.1038/sj.pcan.4500296)

    • Search Google Scholar
    • Export Citation
  • Goel HL, Li J, Kogan S & Languino LR 2008 Integrins in prostate cancer progression. Endocrine-Related Cancer 15 657664. (https://doi.org/10.1677/ERC-08-0019)

    • Search Google Scholar
    • Export Citation
  • Goemann IM, Marczyk VR, Romitti M, Wajner SM & Maia AL 2018 Current concepts and challenges to unravel the role of iodothyronine deiodinases in human neoplasias. Endocrine-Related Cancer 25 R625R645. (https://doi.org/10.1530/ERC-18-0097)

    • Search Google Scholar
    • Export Citation
  • Hellevik AI, Asvold BO, Bjøro T, Romundstad PR, Nilsen TIL & Vatten LJ 2009 Thyroid function and cancer risk: a prospective population study. Cancer Epidemiology, Biomarkers and Prevention 18 570574. (https://doi.org/10.1158/1055-9965.EPI-08-0911)

    • Search Google Scholar
    • Export Citation
  • Hoermann R, Cheung AS, Milne M & Grossmann M 2017 Hypothalamic-pituitary-thyroid axis set point alterations are associated with body composition in androgen-deprived men. Journal of the Endocrine Society 1 874885. (https://doi.org/10.1210/js.2017-00057)

    • Search Google Scholar
    • Export Citation
  • Hsieh ML & Juang HH 2005 Growth effects of triiodothyronine and expression of thyroid hormone receptor in prostate carcinoma cells. Journal of Andrology 26 422428. (https://doi.org/10.2164/jandrol.04162)

    • Search Google Scholar
    • Export Citation
  • Ishida T, Yamauchi K, Ishikawa K & Yamamoto T 1993 Molecular cloning and characterization of the promoter region of the human c-erbAα gene. Biochemical and Biophysical Research Communications 191 831839. (https://doi.org/10.1006/bbrc.1993.1292)

    • Search Google Scholar
    • Export Citation
  • Khan SR, Chaker L, Ruiter R, Aerts JG, Hofman A, Dehghan A, Franco OH, Stricker BH & Peeters RP 2016 Thyroid function and cancer risk: the Rotterdam study. Journal of Clinical Endocrinology and Metabolism 101 50305036. (https://doi.org/10.1210/jc.2016-2104)

    • Search Google Scholar
    • Export Citation
  • Kotolloshi R, Mirzakhani K, Ahlburg J, Kraft F, Pungsrinont T & Baniahmad A 2020 Thyroid hormone induces cellular senescence in prostate cancer cells through induction of DEC1. Journal of Steroid Biochemistry and Molecular Biology 201 105689. (https://doi.org/10.1016/j.jsbmb.2020.105689)

    • Search Google Scholar
    • Export Citation
  • Kowalik MA, Puliga E, Cabras L, Sulas P, Petrelli A, Perra A, Ledda-Columbano GM, Morandi A, Merlin S & Orrù C et al. 2020 Thyroid hormone inhibits hepatocellular carcinoma progression via induction of differentiation and metabolic reprogramming. Journal of Hepatology 72 11591169. (https://doi.org/10.1016/j.jhep.2019.12.018)

    • Search Google Scholar
    • Export Citation
  • Krashin E, Piekiełko-Witkowska A, Ellis M & Ashur-Fabian O 2019 Thyroid hormones and cancer: a comprehensive review of preclinical and clinical studies. Frontiers in Endocrinology 10 59. (https://doi.org/10.3389/fendo.2019.00059)

    • Search Google Scholar
    • Export Citation
  • Liu YC, Yeh CT & Lin KH 2019 Molecular functions of thyroid hormone signaling in regulation of cancer progression and anti-apoptosis. International Journal of Molecular Sciences 20 E4986. (https://doi.org/10.3390/ijms20204986)

    • Search Google Scholar
    • Export Citation
  • López-Juárez A, Delgado G, Aceves C & Anguiano B 2009 Type 1 deiodinase activity and generation of triiodothyronine (T3) in prostate of sexually active rats. Prostate 69 16511659. (https://doi.org/10.1002/pros.21015)

    • Search Google Scholar
    • Export Citation
  • Luongo C, Dentice M & Salvatore D 2019 Deiodinases and their intricate role in thyroid hormone homeostasis. Nature Reviews: Endocrinology 15 479488. (https://doi.org/10.1038/s41574-019-0218-2)

    • Search Google Scholar
    • Export Citation
  • Maddison LA, Huss WJ, Barrios RM & Greenberg NM 2004 Differential expression of cell cycle regulatory molecules and evidence for a ‘cyclin switch’ during progression of prostate cancer. Prostate 58 335344. (https://doi.org/10.1002/pros.10341)

    • Search Google Scholar
    • Export Citation
  • Maran RRM, Aruldhas MM, Udhayakumar RCR, Subramanian S, Rajendiran G, Antony FF, Arunakaran J & Govindarajulu P 1998 Impact of altered thyroid hormone status on prostatic glycosidases. International Journal of Andrology 21 121128. (https://doi.org/10.1046/j.1365-2605.1998.00094.x)

    • Search Google Scholar
    • Export Citation
  • Maran RR, Senthilkumaran B, Udhayakumar RC, Arunakaran J & Aruldhas MM 2000 Thyroidectomy modulates rat prostatic monosaccharides. International Journal of Andrology 23 156162. (https://doi.org/10.1046/j.1365-2605.2000.00220.x)

    • Search Google Scholar
    • Export Citation
  • Michienzi S, Bucci B, Falzacappa CV, Patriarca V, Stigliano A, Panacchia L, Brunetti E, Toscano V & Misiti S 2007 3,3′,5-Triiodo-L-thyronine inhibits ductal pancreatic adenocarcinoma proliferation improving the cytotoxic effect of chemotherapy. Journal of Endocrinology 193 209223. (https://doi.org/10.1677/joe.1.07065)

    • Search Google Scholar
    • Export Citation
  • Mondul AM, Weinstein SJ, Bosworth T, Remaley AT, Virtamo J & Albanes D 2012 Circulating thyroxine, thyroid-stimulating hormone, and hypothyroid status and the risk of prostate cancer. PLoS ONE 7 e47730. (https://doi.org/10.1371/journal.pone.0047730)

    • Search Google Scholar
    • Export Citation
  • Naryzhny SN 2008 Proliferating cell nuclear antigen: a proteomics view. Cellular and Molecular Life Sciences 65 37893808. (https://doi.org/10.1007/s00018-008-8305-x)

    • Search Google Scholar
    • Export Citation
  • Natsume H, Sasaki S, Kitagawa M, Kashiwabara Y, Matsushita A, Nakano K, Nishiyama K, Nagayama K, Misawa H & Masuda H et al. 2003 β-Catenin/Tcf-1-mediated transactivation of cyclin D1 promoter is negatively regulated by thyroid hormone. Biochemical and Biophysical Research Communications 309 408413. (https://doi.org/10.1016/j.bbrc.2003.08.019)

    • Search Google Scholar
    • Export Citation
  • Sakurai A, Miyamoto T & DeGroot LJ 1992 Cloning and characterization of the human thyroid hormone receptor β1 gene promoter. Biochemical and Biophysical Research Communications 185 7884. (https://doi.org/10.1016/S0006-291X(0580957-X)

    • Search Google Scholar
    • Export Citation
  • Sakurai A, Nakai A & DeGroot LJ 1989 Expression of three forms of thyroid hormone receptor in human tissues. Molecular Endocrinology 3 392399. (https://doi.org/10.1210/mend-3-2-392)

    • Search Google Scholar
    • Export Citation
  • Scarlett A, Parsons MP, Hanson PL, Sidhu KK, Milligan TP & Burrin JM 2008 Thyroid hormone stimulation of extracellular signal-regulated kinase and cell proliferation in human osteoblast-like cells is initiated at integrin alphaVbeta3. Journal of Endocrinology 196 509517. (https://doi.org/10.1677/JOE-07-0344)

    • Search Google Scholar
    • Export Citation
  • Sidharthan V, Rajalingam R, Aruldhas MM & Govindarajulu P 1993 Ventral prostatic phosphomonoesterases and adenosine triphosphatases in hypo- and hyperthyroid albino rats. Indian Journal of Experimental Biology 31 414416.

    • Search Google Scholar
    • Export Citation
  • Sidharthan V, Rose PJ, Rajalingam R, Udhayakumar RC, Aruldhas MM & Govindarajulu P 1994 Dorsolateral prostatic phosphomonoesterases and adenosine triphosphatases in hypo- and hyperthyroid rats. Indian Journal of Experimental Biology 32 616618.

    • Search Google Scholar
    • Export Citation
  • St. Germain DL, Schwartzman RA, Croteau W, Kanamori A, Wang Z, Brown DD & Galton VA 1994 A thyroid hormone-regulated gene in Xenopus laevis encodes a type III iodothyronine 5-deiodinase. PNAS 91 77677771. (https://doi.org/10.1073/pnas.91.16.7767)

    • Search Google Scholar
    • Export Citation
  • Tashiro E, Tsuchiya A & Imoto M 2007 Functions of cyclin D1 as an oncogene and regulation of cyclin D1 expression. Cancer Science 98 629635. (https://doi.org/10.1111/j.1349-7006.2007.00449.x)

    • Search Google Scholar
    • Export Citation
  • Theodossiou C, Skrepnik N, Robert EG, Prasad C, Axelrad TW, Schapira DV & Hunt JD 1999 Propylthiouracil-induced hypothyroidism reduces xenograft tumor growth in athymic nude mice. Cancer 86 15961601. (https://doi.org/10.1002/(SICI)1097-0142(19991015)86:8<1596::AID-CNCR30>3.0.CO;2-C)

    • Search Google Scholar
    • Export Citation
  • Tran TV, Kitahara CM, de Vathaire F, Boutron-Ruault MC & Journy N 2020 Thyroid dysfunction and cancer incidence: a systematic review and meta-analysis. Endocrine-Related Cancer 27 245259. (https://doi.org/10.1530/ERC-19-0417)

    • Search Google Scholar
    • Export Citation
  • Tsui KH, Hsieh WC, Lin MH, Chang PL & Juang HH 2008 Triiodothyronine modulates cell proliferation of human prostatic carcinoma cells by downregulation of the B-cell translocation gene 2. Prostate 68 610619. (https://doi.org/10.1002/pros.20725)

    • Search Google Scholar
    • Export Citation
  • van Doorn J, Roelfsema F & van der Heide D 1985 Concentrations of thyroxine and 3,5,3′-triiodothyronine at 34 different sites in euthyroid rats as determined by an isotopic equilibrium technique. Endocrinology 117 12011208. (https://doi.org/10.1210/endo-117-3-1201)

    • Search Google Scholar
    • Export Citation
  • Vella KR & Hollenberg AN 2017 The actions of thyroid hormone signaling in the nucleus. Molecular and Cellular Endocrinology 458 127135. (https://doi.org/10.1016/j.mce.2017.03.001)

    • Search Google Scholar
    • Export Citation
  • White P, Burton KA, Fowden AL & Dauncey MJ 2001 Developmental expression analysis of thyroid hormone receptor isoforms reveals new insights into their essential functions in cardiac and skeletal muscles. FASEB Journal 15 13671376. (https://doi.org/10.1096/fj.00-0725com)

    • Search Google Scholar
    • Export Citation
  • Wilson MJ, Kirby JD, Zhao Y, Sinha AA & Cooke PS 1997 Neonatal hypothyroidism alters the pattern of prostatic growth and differentiation, as well as plasminogen activator and metalloprotease expression, in the rat. Biology of Reproduction 56 475482. (https://doi.org/10.1095/biolreprod56.2.475)

    • Search Google Scholar
    • Export Citation
  • Yen PM 2001 Physiological and molecular basis of thyroid hormone action. Physiological Reviews 81 10971142. (https://doi.org/10.1152/physrev.2001.81.3.1097)

    • Search Google Scholar
    • Export Citation
  • Yuniati L, Scheijen B, van der Meer LT & van Leeuwen FN 2019 Tumor suppressors BTG1 and BTG2: beyond growth control. Journal of Cellular Physiology 234 53795389. (https://doi.org/10.1002/jcp.27407)

    • Search Google Scholar
    • Export Citation
  • Zhang S, Hsieh ML, Zhu W, Klee GG, Tindall DJ & Young CY 1999 Interactive effects of triiodothyronine and androgens on prostate cell growth and gene expression. Endocrinology 140 16651671. (https://doi.org/10.1210/endo.140.4.6666)

    • Search Google Scholar
    • Export Citation
  • Zhang P, Chen L, Song Y, Li X, Sun Y, Xiao Y & Xing Y 2016 Tetraiodothyroacetic acid and transthyretin silencing inhibit pro-metastatic effect of L-thyroxin in anoikis-resistant prostate cancer cells through regulation of MAPK/ERK pathway. Experimental Cell Research 347 350359. (https://doi.org/10.1016/j.yexcr.2016.08.019)

    • Search Google Scholar
    • Export Citation