Chorionic somatomammotropin RNA interference alters fetal liver glucose utilization

in Journal of Endocrinology
Authors:
Asghar Ali Colorado State University, Animal Reproduction and Biotechnology Lab, Fort Collins, Colorado, USA

Search for other papers by Asghar Ali in
Current site
Google Scholar
PubMed
Close
,
Callie M Swanepoel Colorado State University, Animal Reproduction and Biotechnology Lab, Fort Collins, Colorado, USA

Search for other papers by Callie M Swanepoel in
Current site
Google Scholar
PubMed
Close
,
Quinton A Winger Colorado State University, Animal Reproduction and Biotechnology Lab, Fort Collins, Colorado, USA

Search for other papers by Quinton A Winger in
Current site
Google Scholar
PubMed
Close
,
Paul J Rozance Perinatal Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA

Search for other papers by Paul J Rozance in
Current site
Google Scholar
PubMed
Close
, and
Russell V Anthony Colorado State University, Animal Reproduction and Biotechnology Lab, Fort Collins, Colorado, USA

Search for other papers by Russell V Anthony in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to R V Anthony: russ.anthony@colostate.edu
Restricted access
Rent on DeepDyve

Sign up for journal news

Chorionic somatomammotropin (CSH) is a placenta-specific hormone associated with fetal growth, and fetal and maternal metabolism in both humans and sheep. We hypothesized that CSH deficiency could impact sheep fetal liver glucose utilization. To generate CSH-deficient pregnancies, day 9 hatched blastocysts were infected with lentiviral particles expressing CSH-specific shRNA (RNAi) or scramble control shRNA (SC) and transferred to synchronized recipients. CSH RNAi generated two distinct phenotypes at 135 days of gestational age (dGA); pregnancies with IUGR (RNAi-IUGR) or with normal fetal weight (RNAi-NW). Fetal body, fetal liver and placental weights were reduced (P < 0.05) only in RNAi-IUGR pregnancies compared to SC. Umbilical artery plasma insulin and insulin-like growth factor 1 (IGF1) concentrations were decreased, whereas insulin receptor beta (INSR) concentration in fetal liver was increased (P < 0.05) in both RNAi phenotypes. The mRNA concentrations of IGF1, IGF2, IGF binding protein 2 (IGFBP2) and IGFBP3 were decreased (P < 0.05) in fetal livers from both RNAi phenotypes. Fetal liver glycogen concentration and glycogen synthase 1 (GYS1) concentration were increased (P < 0.05), whereas fetal liver phosphorylated-GYS (inactive GYS) concentration was reduced (P < 0.05) in both RNAi phenotypes. Lactate dehydrogenase B (LDHB) concentration was increased (P < 0.05) and IGF2 concentration was decreased (P < 0.05) in RNAi-IUGR fetal livers only. Our findings suggest that fetal liver glucose utilization is impacted by CSH RNAi, independent of IUGR, and is likely tied to enhanced fetal liver insulin sensitivity in both RNAi phenotypes. Determining the physiological ramifications of both phenotypes, may help to differentiate direct effect of CSH deficiency or its indirect effect through IUGR.

Supplementary Materials

    • Supplementary table 1. Antibodies

 

  • Collapse
  • Expand
  • Baker CM, Goetzmann LN, Cantlon JD, Jeckel KM, Winger QA & Anthony RV 2016 Development of ovine chorionic somatomammotropin hormone-deficient pregnancies. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 310 R837R846. (https://doi.org/10.1152/ajpregu.00311.2015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barbieri F, Botticelli A, Consarino R, Genazzani AR & Volpe A 1986 Failure of placenta to produce hPL in an otherwise uneventful pregnancy: a case report. Biological Research in Pregnancy and Perinatology 7 131133.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bauer MK, Breier BH, Harding JE, Veldhuis JD & Gluckman PD 1995 The fetal somatotropic axis during long term maternal undernutrition in sheep: evidence for nutritional regulation in utero. Endocrinology 136 12501257. (https://doi.org/10.1210/endo.136.3.7867579)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Beale EG 2013 Insulin signaling and insulin resistance. Journal of Investigative Medicine 61 1114. (https://doi.org/10.2310/JIM.0b013e3182746f95)

  • Bennett LL, Curry DL & Li CH 1976 Enhancement of insulin secretion by human chorionic somatomammotropin and related hormones. Proceedings of the Society for Experimental Biology and Medicine: Society for Experimental Biology and Medicine 152 281283. (https://doi.org/10.3181/00379727-152-39379)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Beurel E, Grieco SF & Jope RS 2015 Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacology and Therapeutics 148 114131. (https://doi.org/10.1016/j.pharmthera.2014.11.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boucher J, Kleinridders A & Kahn CR 2014 Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harbor Perspectives in Biology 6 a009191. (https://doi.org/10.1101/cshperspect.a009191)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bouskila M, Hunter RW, Ibrahim AFM, Delattre L, Peggie M, van Diepen JA, Voshol PJ, Jensen J & Sakamoto K 2010 Allosteric regulation of glycogen synthase controls glycogen synthesis in muscle. Cell Metabolism 12 456466. (https://doi.org/10.1016/j.cmet.2010.10.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brown LD, Rozance PJ, Bruce JL, Friedman JE, Hay WW & Wesolowski SR 2015 Limited capacity for glucose oxidation in fetal sheep with intrauterine growth restriction. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 309 R920R 928. (https://doi.org/10.1152/ajpregu.00197.2015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Browner MF, Nakano K, Bang AG & Fletterick RJ 1989 Human muscle glycogen synthase cDNA sequence: a negatively charged protein with an asymmetric charge distribution. PNAS 86 14431447. (https://doi.org/10.1073/pnas.86.5.1443)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Butler WR, Huyler SE, Grandis AS & Handwerger S 1987 Failure of fasting and changes in plasma metabolites to affect spontaneous fluctuations in plasma concentrations of ovine placental lactogen. Journal of Endocrinology 114 391397. (https://doi.org/10.1677/joe.0.1140391)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chan JS, Robertson HA & Friesen HG 1978 Distribution of binding sites for ovine placental lactogen in the sheep. Endocrinology 102 632640. (https://doi.org/10.1210/endo-102-2-632)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Culpepper C, Wesolowski SR, Benjamin J, Bruce JL, Brown LD, Jonker SS, Wilkening RB, Hay WW & Rozance PJ 2016 Chronic anemic hypoxemia increases plasma glucagon and hepatic PCK1 mRNA in late-gestation fetal sheep. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 311 R200R 208. (https://doi.org/10.1152/ajpregu.00037.2016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ding H & Wu T 2018 Insulin-like growth factor binding proteins in autoimmune diseases. Frontiers in Endocrinology 9 499. (https://doi.org/10.3389/fendo.2018.00499)

  • Eisen HJ, Goldfine ID & Glinsmann WH 1973 Regulation of hepatic glycogen synthesis during fetal development: roles of hydrocortisone, insulin, and insulin receptors. PNAS 70 34543457. (https://doi.org/10.1073/pnas.70.12.3454)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fang X, Yu SX, Lu Y, Bast RC, Woodgett JR & Mills GB 2000 Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. PNAS 97 1196011965. (https://doi.org/10.1073/pnas.220413597)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Freemark M 2010 Placental hormones and the control of fetal growth. Journal of Clinical Endocrinology and Metabolism 95 20542057. (https://doi.org/10.1210/jc.2010-0517)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Freemark M & Handwerger S 1984a Ovine placental lactogen stimulates glycogen synthesis in fetal rat hepatocytes. American Journal of Physiology 246 E21E 24. (https://doi.org/10.1152/ajpendo.1984.246.1.E21)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Freemark M & Handwerger S 1984b Synergistic effects of oPL and insulin on glycogen metabolism in fetal rat hepatocytes. American Journal of Physiology 247 E714E718. (https://doi.org/10.1152/ajpendo.1984.247.6.E714)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Freemark M & Handwerger S 1985 Ovine placental lactogen inhibits glucagon-induced glycogenolysis in fetal rat hepatocytes. Endocrinology 116 12751280. (https://doi.org/10.1210/endo-116-4-1275)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Freemark M, Comer M & Handwerger S 1986 Placental lactogen and GH receptors in sheep liver: striking differences in ontogeny and function. American Journal of Physiology 251 E328E333. (https://doi.org/10.1152/ajpendo.1986.251.3.E328)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Freemark M, Comer M, Korner G & Handwerger S 1987 A unique placental lactogen receptor: implications for fetal growth. Endocrinology 120 18651872. (https://doi.org/10.1210/endo-120-5-1865)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Freemark M, Comer M, Mularoni T, D’Ercole AJ, Grandis A & Kodack L 1990 Placental lactogen receptors in maternal sheep liver: effects of fasting and refeeding. American Journal of Physiology 258 E338E346. (https://doi.org/10.1152/ajpendo.1990.258.2.E338)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Freemark M, Keen A, Fowlkes J, Mularoni T, Comer M, Grandis A & Kodack L 1992 The placental lactogen receptor in maternal and fetal sheep liver: regulation by glucose and role in the pathogenesis of fasting during pregnancy. Endocrinology 130 10631070. (https://doi.org/10.1210/endo.130.2.1310275)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gagnon R 2003 Placental insufficiency and its consequences. European Journal of Obstetrics, Gynecology, and Reproductive Biology 110 (Supplement 1) S99S 107. (https://doi.org/10.1016/s0301-2115(0300179-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garrett RH & Grisham CM 2001 Principles of Biochemistry: With a Human Focus. Harcourt College Publishers.

  • Giampietro O, Ferdeghini M & Scatena P 1984 Human placental lactogen (hPL) deficiency in a normal pregnancy. Postgraduate Medical Journal 60 689690. (https://doi.org/10.1136/pgmj.60.708.689)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gootwine E 2004 Placental hormones and fetal-placental development. Animal Reproduction Science 82–83 551566. (https://doi.org/10.1016/j.anireprosci.2004.04.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Grijalva J & Vakili K 2013 Neonatal liver physiology. Seminars in Pediatric Surgery 22 185189. (https://doi.org/10.1053/j.sempedsurg.2013.10.006)

  • Handwerger S 1991 Clinical counterpoint: the physiology of placental lactogen in human pregnancy. Endocrine Reviews 12 329336. (https://doi.org/10.1210/edrv-12-4-329)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Handwerger S & Freemark M 2000 The roles of placental growth hormone and placental lactogen in the regulation of human fetal growth and development. Journal of Pediatric Endocrinology and Metabolism 13 343356. (https://doi.org/10.1515/jpem.2000.13.4.343)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Handwerger S, Fellows RE, Crenshaw MC, Hurley T, Barrett J & Maurer WF 1976 Ovine placental lactogen: acute effects on intermediary metabolism in pregnant and non-pregnant sheep. Journal of Endocrinology 69 133137. (https://doi.org/10.1677/joe.0.0690133)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hay WW 2006 Placental-fetal glucose exchange and fetal glucose metabolism. Transactions of the American Clinical and Climatological Association 117 3213 3 9; discussion 339.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hill DJ, Freemark M, Strain AJ, Handwerger S & Milner RD 1988 Placental lactogen and growth hormone receptors in human fetal tissues: relationship to fetal plasma human placental lactogen concentrations and fetal growth. Journal of Clinical Endocrinology and Metabolism 66 12831290. (https://doi.org/10.1210/jcem-66-6-1283)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Holen T, Amarzguioui M, Wiiger MT, Babaie E & Prydz H 2002 Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Research 30 17571766. (https://doi.org/10.1093/nar/30.8.1757)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hong SW, Jiang Y, Kim S, Li CJ & Lee DK 2014 Target gene abundance contributes to the efficiency of siRNA-mediated gene silencing. Nucleic Acid Therapeutics 24 192198. (https://doi.org/10.1089/nat.2013.0466)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hurley TW, D’Ercole AJ, Handwerger S, Underwood LE, Furlanetto RW & Fellows RE 1977 Ovine placental lactogen induces somatomedin: a a possible role in fetal growth. Endocrinology 101 16351638. (https://doi.org/10.1210/endo-101-5-1635)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jeckel KM, Boyarko AC, Bouma GJ, Winger QA & Anthony RV 2018 Chorionic somatomammotropin impacts early fetal growth and placental gene expression. Journal of Endocrinology 237 301310. (https://doi.org/10.1530/JOE-18-0093)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lea RG, Wooding P, Stewart I, Hannah LT, Morton S, Wallace K, Aitken RP, Milne JS, Regnault TR & Anthony RV et al.2007 The expression of ovine placental lactogen, StAR and progesterone-associated steroidogenic enzymes in placentae of overnourished growing adolescent ewes. Reproduction 133 785796. (https://doi.org/10.1530/REP-06-0294)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liang L, Guo WH, Esquiliano DR, Asai M, Rodriguez S, Giraud J, Kushner JA, White MF & Lopez MF 2010 Insulin-like growth factor 2 and the insulin receptor, but not insulin, regulate fetal hepatic glycogen synthesis. Endocrinology 151 741747. (https://doi.org/10.1210/en.2009-0705)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Limesand SW, Rozance PJ, Smith D & Hay WW 2007 Increased insulin sensitivity and maintenance of glucose utilization rates in fetal sheep with placental insufficiency and intrauterine growth restriction. American Journal of Physiology: Endocrinology and Metabolism 293 E1716E 1725. (https://doi.org/10.1152/ajpendo.00459.2007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Min SH, Mackenzie DD, Breier BH, McCutcheon SN & Gluckman PD 1996 Growth-promoting effects of ovine placental lactogen (oPL) in young lambs: comparison with bovine growth hormone provides evidence for a distinct effect of oPL on food intake. Growth Regulation 6 144151.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Muhič M, Vardjan N, Chowdhury HH, Zorec R & Kreft M 2015 Insulin and insulin-like growth factor 1 (IGF-1) modulate cytoplasmic glucose and glycogen levels but not glucose transport across the membrane in astrocytes. Journal of Biological Chemistry 290 1116711176. (https://doi.org/10.1074/jbc.M114.629063)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pratt SL, Kappes SM & Anthony RV 1995 Ontogeny of a specific high-affinity binding site for ovine placental lactogen in fetal and postnatal liver. Domestic Animal Endocrinology 12 337347. (https://doi.org/10.1016/0739-7240(9500030-i)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ramezani A, Hawley TS & Hawley RG 2000 Lentiviral vectors for enhanced gene expression in human hematopoietic cells. Molecular Therapy 2 458469. (https://doi.org/10.1006/mthe.2000.0190)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rygaard K, Revol A, Esquivel-Escobedo D, Beck BL & Barrera-Saldaña HA 1998 Absence of human placental lactogen and placental growth hormone (HGH-V) during pregnancy: PCR analysis of the deletion. Human Genetics 102 8792. (https://doi.org/10.1007/s004390050658)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schoknecht PA, McGuire MA, Cohick WS, Currie WB & Bell AW 1996 Effect of chronic infusion of placental lactogen on ovine fetal growth in late gestation. Domestic Animal Endocrinology 13 519528. (https://doi.org/10.1016/s0739-7240(9600090-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sibiak R, Jankowski M, Gutaj P, Mozdziak P, Kempisty B & Wender-Ożegowska E 2020 Placental lactogen as a marker of maternal obesity, diabetes, and fetal growth abnormalities: current knowledge and clinical perspectives. Journal of Clinical Medicine 9 1142. (https://doi.org/10.3390/jcm9041142)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Simon P, Decoster C, Brocas H, Schwers J & Vassart G 1986 Absence of human chorionic somatomammotropin during pregnancy associated with two types of gene deletion. Human Genetics 74 235238. (https://doi.org/10.1007/BF00282540)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Spellacy WN, Buhi WC & Birk SA 1976 Human placental lactogen and intrauterine growth retardation. Obstetrics and Gynecology 47 446448.

  • Swenne I, Hill DJ, Strain AJ & Milner RD 1987 Effects of human placental lactogen and growth hormone on the production of insulin and somatomedin C/insulin-like growth factor I by human fetal pancreas in tissue culture. Journal of Endocrinology 113 297303. (https://doi.org/10.1677/joe.0.1130297)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taylor MJ, Jenkin G, Robinson JS, Thorburn GD, Friesen H & Chan JS 1980 Concentrations of placental lactogen in chronically catheterized ewes and fetuses in late pregnancy. Journal of Endocrinology 85 2734. (https://doi.org/10.1677/joe.0.0850027)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thorn SR, Regnault TRH, Brown LD, Rozance PJ, Keng J, Roper M, Wilkening RB, Hay WW & Friedman JE 2009 Intrauterine growth restriction increases fetal hepatic gluconeogenic capacity and reduces messenger ribonucleic acid translation initiation and nutrient sensing in fetal liver and skeletal muscle. Endocrinology 150 30213030. (https://doi.org/10.1210/en.2008-1789)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Trapp M, De Wilde R, Holzgreve W, Stals HJ & Bohnet HG 1987 A pregnancy without detectable human placental lactogen (hPL). Zentralblatt Fur Gynakologie 109 130133.

  • Wesolowski SR & Hay WW 2016 Role of placental insufficiency and intrauterine growth restriction on the activation of fetal hepatic glucose production. Molecular and Cellular Endocrinology 435 6168. (https://doi.org/10.1016/j.mce.2015.12.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Westphal SA & Nuttall FQ 1992 Comparative characterization of human and rat liver glycogen synthase. Archives of Biochemistry and Biophysics 292 479486. (https://doi.org/10.1016/0003-9861(9290019-S)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • White V, Jawerbaum A, Mazzucco MB, Gauster M, Desoye G & Hiden U 2018 IGF2 stimulates fetal growth in a sex- and organ-dependent manner. Pediatric Research 83 183189. (https://doi.org/10.1038/pr.2017.221)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wurzel JM, Parks JS, Herd JE & Nielsen PV 1982 A gene deletion is responsible for absence of human chorionic somatomammotropin. DNA 1 251257. (https://doi.org/10.1089/dna.1.1982.1.251)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang J, Kalhan SC & Hanson RW 2009 What is the metabolic role of phosphoenolpyruvate carboxykinase? Journal of Biological Chemistry 284 2702527029. (https://doi.org/10.1074/jbc.R109.040543)

    • PubMed
    • Search Google Scholar
    • Export Citation