Four days high fat diet modulates vitamin D metabolite levels and enzymes in mice

in Journal of Endocrinology
View More View Less
  • 1 Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France
  • 2 CriBioM, Criblage Biologique Marseille, Faculté de Médecine de la Timone, Marseille, France

Correspondence should be addressed to J-F Landrier: jean-francois.landrier@univ-amu.fr
Restricted access

Obesity is classically associated with low serum total and free 25(OH)D. Hypotheses have been advanced to explain this observation but mechanisms remain poorly understood, and notably priming events that could explain such association. We investigated the impact of short-term high fat (HF) diet to investigate early events occurring in vitamin D metabolism. Male C57BL/6J mice were fed with a control diet (control group) and HF diet for 4 days. HF fed mice displayed similar body weight to control mice but significantly increased adiposity, together with a decrease of free 25(OH)D concentrations, which could be explained at least in part by a decrease of Cyp2r1 and Cyp3a11 expression in the liver. An increase of 1,25(OH)2D concentration was also observed and could be explained by a decrease of Cyp24a1 expression observed in the kidney. In white adipose tissue (WAT), no modification of vitamin D metabolites quantity detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Nevertheless, an increase of Cyp2r1 and Cyp27a1 mRNA expression and a decrease of Cyp27b1 mRNA expression could suggest a possible storage of 25(OH)D in WAT at long-term. Our data are supportive of an active role of HF diet in mediating a priming effect leading the well-established perturbation of the vitamin D metabolism associated with obesity, including a decrease of free 25(OH)D and modulation of expression of genes involved in vitamin D metabolism.

 

Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 35 35 35
Full Text Views 46 46 46
PDF Downloads 14 14 14
  • Aatsinki SM, Elkhwanky MS, Kummu O, Karpale M, Buler M, Viitala P, Rinne V, Mutikainen M, Tavi P & Franko A et al. 2019 Fasting-induced transcription factors repress vitamin D bioactivation, a mechanism for vitamin D deficiency in diabetes. Diabetes 68 918931. (https://doi.org/10.2337/db18-1050)

    • Search Google Scholar
    • Export Citation
  • Bell NH 1985 Vitamin D-endocrine system. Journal of Clinical Investigation 76 16. (https://doi.org/10.1172/JCI111930)

  • Bell NH, Shaw S & Turner RT 1984 Evidence that 1,25-dihydroxyvitamin D3 inhibits the hepatic production of 25-hydroxyvitamin D in man. Journal of Clinical Investigation 74 1540154 4. (https://doi.org/10.1172/JCI111568)

    • Search Google Scholar
    • Export Citation
  • Bikle DD, Murphy EW & Rasmussen H 1975 The ionic control of 1,25-dihydroxyvitamin D3 synthesis in isolated chick renal mitochondria. The role of calcium as influenced by inorganic phosphate and hydrogen-ion. Journal of Clinical Investigation 55 299304. (https://doi.org/10.1172/JCI107933)

    • Search Google Scholar
    • Export Citation
  • Bikle DD, Gee E, Halloran B, Kowalski MA, Ryzen E & Haddad JG 1986 Assessment of the free fraction of 25-hydroxyvitamin D in serum and its regulation by albumin and the vitamin D-binding protein. Journal of Clinical Endocrinology and Metabolism 63 9549 59. (https://doi.org/10.1210/jcem-63-4-954)

    • Search Google Scholar
    • Export Citation
  • Bikle D, Bouillon R, Thadhani R & Schoenmakers I 2017 Vitamin D metabolites in captivity? Should we measure free or total 25(OH)D to assess vitamin D status? Journal of Steroid Biochemistry and Molecular Biology 173 105116. (https://doi.org/10.1016/j.jsbmb.2017.01.007)

    • Search Google Scholar
    • Export Citation
  • Bonnet L, Karkeni E, Couturier C, Astier J, Dalifard J, Defoort C, Svilar L, Martin JC, Tourniaire F & Landrier JF 2018 Gene expression pattern in response to cholecalciferol supplementation highlights cubilin as a major protein of 25(OH)D uptake in adipocytes and male mice white adipose tissue. Endocrinology 159 957966. (https://doi.org/10.1210/en.2017-00650)

    • Search Google Scholar
    • Export Citation
  • Bonnet L, Hachemi MA, Karkeni E, Couturier C, Astier J, Defoort C, Svilar L, Martin JC, Tourniaire F & Landrier JF 2019a Diet induced obesity modifies vitamin D metabolism and adipose tissue storage in mice. Journal of Steroid Biochemistry and Molecular Biology 185 3946. (https://doi.org/10.1016/j.jsbmb.2018.07.006)

    • Search Google Scholar
    • Export Citation
  • Bonnet L, Margier M, Svilar L, Couturier C, Reboul E, Martin JC, Landrier JF & Defoort C 2019b Simple fast quantification of cholecalciferol, 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D in adipose tissue using LC-HRMS/MS. Nutrients 11. (https://doi.org/10.3390/nu11091977)

    • Search Google Scholar
    • Export Citation
  • Carpenter TO, Zhang JH, Parra E, Ellis BK, Simpson C, Lee WM, Balko J, Fu L, Wong BYL & Cole DEC 2013 Vitamin D binding protein is a key determinant of 25-hydroxyvitamin D levels in infants and toddlers. Journal of Bone and Mineral Research 28 213221. (https://doi.org/10.1002/jbmr.1735)

    • Search Google Scholar
    • Export Citation
  • Drincic AT, Armas LA, Van Diest EE & Heaney RP 2012 Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity 20 1444144 8. (https://doi.org/10.1038/oby.2011.404)

    • Search Google Scholar
    • Export Citation
  • Earthman CP, Beckman LM, Masodkar K & Sibley SD 2012 The link between obesity and low circulating 25-hydroxyvitamin D concentrations: considerations and implications. International Journal of Obesity 36 3873 96. (https://doi.org/10.1038/ijo.2011.119)

    • Search Google Scholar
    • Export Citation
  • Elkhwanky MS, Kummu O, Piltonen TT, Laru J, Morin‐Papunen L, Mutikainen M, Tavi P & Hakkola J 2020 Obesity represses CYP2R1, the vitamin D 25‐hydroxylase, in the liver and extrahepatic tissues. JBMR Plus 4 e10397. (https://doi.org/10.1002/jbm4.10397)

    • Search Google Scholar
    • Export Citation
  • Heureux N, Lindhout E & Swinkels L 2017 A direct assay for measuring free 25-hydroxyvitamin D. Journal of AOAC International 100 13181322. (https://doi.org/10.5740/jaoacint.17-0084)

    • Search Google Scholar
    • Export Citation
  • Karkeni E, Marcotorchino J, Tourniaire F, Astier J, Peiretti F, Darmon P & Landrier JF 2015 Vitamin D limits chemokine expression in adipocytes and macrophage migration in vitro and in male mice. Endocrinology 156 178217 93. (https://doi.org/10.1210/en.2014-1647)

    • Search Google Scholar
    • Export Citation
  • Karkeni E, Bonnet L, Astier J, Couturier C, Dalifard J, Tourniaire F & Landrier JF 2017a All-trans-retinoic acid represses chemokine expression in adipocytes and adipose tissue by inhibiting NF-kappaB signaling. Journal of Nutritional Biochemistry 42 101107. (https://doi.org/10.1016/j.jnutbio.2017.01.004)

    • Search Google Scholar
    • Export Citation
  • Karkeni E, Bonnet L, Marcotorchino J, Tourniaire F, Astier J, Ye J & Landrier JF 2017b Vitamin D limits inflammation-linked microRNA expression in adipocytes in vitro and in vivo: a new mechanism for the regulation of inflammation by vitamin D. Epigenetics 13 156162. (https://doi.org/10.1080/15592294.2016.1276681)

    • Search Google Scholar
    • Export Citation
  • Landrier JF, Karkeni E, Marcotorchino J, Bonnet L & Tourniaire F 2016 Vitamin D modulates adipose tissue biology: possible consequences for obesity? Proceedings of the Nutrition Society 75 3846. (https://doi.org/10.1017/S0029665115004164)

    • Search Google Scholar
    • Export Citation
  • Livak KJ & Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 40240 8. (https://doi.org/10.1006/meth.2001.1262)

    • Search Google Scholar
    • Export Citation
  • Marcotorchino J, Gouranton E, Romier B, Tourniaire F, Astier J, Malezet C, Amiot MJ & Landrier JF 2012 Vitamin D reduces the inflammatory response and restores glucose uptake in adipocytes. Molecular Nutrition and Food Research 56 177117 82. (https://doi.org/10.1002/mnfr.201200383)

    • Search Google Scholar
    • Export Citation
  • Marcotorchino J, Tourniaire F, Astier J, Karkeni E, Canault M, Amiot MJ, Bendahan D, Bernard M, Martin JC & Giannesini B et al. 2014 Vitamin D protects against diet-induced obesity by enhancing fatty acid oxidation. Journal of Nutritional Biochemistry 25 107710 83. (https://doi.org/10.1016/j.jnutbio.2014.05.010)

    • Search Google Scholar
    • Export Citation
  • Marziou A, Philouze C, Couturier C, Astier J, Obert P, Landrier JF & Riva C 2020 Vitamin D supplementation improves adipose tissue inflammation and reduces hepatic steatosis in obese C57BL/6J mice. Nutrients 12 342. (https://doi.org/10.3390/nu12020342)

    • Search Google Scholar
    • Export Citation
  • Park JM, Park CY & Han SN 2015 High fat diet-Induced obesity alters vitamin D metabolizing enzyme expression in mice. BioFactors 41 1751 82. (https://doi.org/10.1002/biof.1211)

    • Search Google Scholar
    • Export Citation
  • Reboul E, Goncalves A, Comera C, Bott R, Nowicki M, Landrier JF, Jourdheuil-Rahmani D, Dufour C, Collet X & Borel P 2011 Vitamin D intestinal absorption is not a simple passive diffusion: evidences for involvement of cholesterol transporters. Molecular Nutrition and Food Research 55 691702. (https://doi.org/10.1002/mnfr.201000553)

    • Search Google Scholar
    • Export Citation
  • Roizen JD, Long C, Casella A, O’Lear L, Caplan I, Lai M, Sasson I, Singh R, Makowski AJ & Simmons R et al. 2019 Obesity decreases hepatic 25-hydroxylase activity causing low serum 25-hydroxyvitamin D. Journal of Bone and Mineral Research 34 10681073. (https://doi.org/10.1002/jbmr.3686)

    • Search Google Scholar
    • Export Citation
  • Schuster I 2011 Cytochromes P450 are essential players in the vitamin D signaling system. Biochimica et Biophysica Acta 1814 1861 99. (https://doi.org/10.1016/j.bbapap.2010.06.022)

    • Search Google Scholar
    • Export Citation
  • Seldeen KL, Pang M, Rodriguez-Gonzalez M, Hernandez M, Sheridan Z, Yu P & Troen BR 2017 A mouse model of vitamin D insufficiency: is there a relationship between 25(OH) vitamin D levels and obesity? Nutrition and Metabolism 14 26. (https://doi.org/10.1186/s12986-017-0174-6)

    • Search Google Scholar
    • Export Citation
  • Vilarrasa N, Maravall J, Estepa A, Sanchez R, Masdevall C, Navarro MA, Alia P, Soler J & Gomez JM 2007 Low 25-hydroxyvitamin D concentrations in obese women: their clinical significance and relationship with anthropometric and body composition variables. Journal of Endocrinological Investigation 30 65365 8. (https://doi.org/10.1007/BF03347445)

    • Search Google Scholar
    • Export Citation
  • Voigt A, Agnew K, Van Schothorst EM, Keijer J & Klaus S 2013 Short-term, high fat feeding-induced changes in white adipose tissue gene expression are highly predictive for long-term changes. Molecular Nutrition and Food Research 57 142314 34. (https://doi.org/10.1002/mnfr.201200671)

    • Search Google Scholar
    • Export Citation
  • Walsh JS, Evans AL, Bowles S, Naylor KE, Jones KS, Schoenmakers I, Jacques RM & Eastell R 2016 Free 25-hydroxyvitamin D is low in obesity, but there are no adverse associations with bone health. American Journal of Clinical Nutrition 103 146514 71. (https://doi.org/10.3945/ajcn.115.120139)

    • Search Google Scholar
    • Export Citation
  • Wamberg L, Christiansen T, Paulsen SK, Fisker S, Rask P, Rejnmark L, Richelsen B & Pedersen SB 2013 Expression of vitamin D-metabolizing enzymes in human adipose tissue – the effect of obesity and diet-induced weight loss. International Journal of Obesity 37 65165 7. (https://doi.org/10.1038/ijo.2012.112)

    • Search Google Scholar
    • Export Citation
  • Wortsman J, Matsuoka LY, Chen TC, Lu Z & Holick MF 2000 Decreased bioavailability of vitamin D in obesity. American Journal of Clinical Nutrition 72 69069 3. (https://doi.org/10.1093/ajcn/72.3.690)

    • Search Google Scholar
    • Export Citation
  • Zhu JG, Ochalek JT, Kaufmann M, Jones G & Deluca HF 2013 CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo. PNAS 110 156501565 5. (https://doi.org/10.1073/pnas.1315006110)

    • Search Google Scholar
    • Export Citation