GH directly inhibits steatosis and liver injury in a sex-dependent and IGF1-independent manner

in Journal of Endocrinology
Authors:
Andre Sarmento-Cabral Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago and Research and Development Division, Jesse Brown VA Medical Center, Chicago, Illinois, USA

Search for other papers by Andre Sarmento-Cabral in
Current site
Google Scholar
PubMed
Close
,
Mercedes del Rio-Moreno Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago and Research and Development Division, Jesse Brown VA Medical Center, Chicago, Illinois, USA

Search for other papers by Mercedes del Rio-Moreno in
Current site
Google Scholar
PubMed
Close
,
Mari C Vazquez-Borrego Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago and Research and Development Division, Jesse Brown VA Medical Center, Chicago, Illinois, USA

Search for other papers by Mari C Vazquez-Borrego in
Current site
Google Scholar
PubMed
Close
,
Mariyah Mahmood Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago and Research and Development Division, Jesse Brown VA Medical Center, Chicago, Illinois, USA

Search for other papers by Mariyah Mahmood in
Current site
Google Scholar
PubMed
Close
,
Elena Gutierrez-Casado Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago and Research and Development Division, Jesse Brown VA Medical Center, Chicago, Illinois, USA

Search for other papers by Elena Gutierrez-Casado in
Current site
Google Scholar
PubMed
Close
,
Natalie Pelke Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago and Research and Development Division, Jesse Brown VA Medical Center, Chicago, Illinois, USA

Search for other papers by Natalie Pelke in
Current site
Google Scholar
PubMed
Close
,
Grace Guzman Department of Pathology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA

Search for other papers by Grace Guzman in
Current site
Google Scholar
PubMed
Close
,
Papasani V Subbaiah Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago and Research and Development Division, Jesse Brown VA Medical Center, Chicago, Illinois, USA

Search for other papers by Papasani V Subbaiah in
Current site
Google Scholar
PubMed
Close
,
Jose Cordoba-Chacon Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago and Research and Development Division, Jesse Brown VA Medical Center, Chicago, Illinois, USA

Search for other papers by Jose Cordoba-Chacon in
Current site
Google Scholar
PubMed
Close
,
Shoshana Yakar Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA

Search for other papers by Shoshana Yakar in
Current site
Google Scholar
PubMed
Close
, and
Rhonda D Kineman Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago and Research and Development Division, Jesse Brown VA Medical Center, Chicago, Illinois, USA

Search for other papers by Rhonda D Kineman in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to A Sarmento-Cabral or R D Kineman: amsbcabral@gmail.com or kineman@uic.edu
Restricted access
Rent on DeepDyve

Sign up for journal news

A reduction in hepatocyte growth hormone (GH)-signaling promotes non-alcoholic fatty liver disease (NAFLD). However, debate remains as to the relative contribution of the direct effects of GH on hepatocyte function vs indirect effects, via alterations in insulin-like growth factor 1 (IGF1). To isolate the role of hepatocyte GH receptor (GHR) signaling, independent of changes in IGF1, mice with adult-onset, hepatocyte-specific GHR knockdown (aHepGHRkd) were treated with a vector expressing rat IGF1 targeted specifically to hepatocytes. Compared to GHR-intact mice, aHepGHRkd reduced circulating IGF1 and elevated GH. In male aHepGHRkd, the shift in IGF1/GH did not alter plasma glucose or non-esterified fatty acids (NEFA), but was associated with increased insulin, enhanced systemic lipid oxidation and reduced white adipose tissue (WAT) mass. Livers of male aHepGHRkd exhibited steatosis associated with increased de novo lipogenesis, hepatocyte ballooning and inflammation. In female aHepGHRkd, hepatic GHR protein levels were not detectable, but moderate levels of IGF1 were maintained, with minimal alterations in systemic metabolism and no evidence of steatosis. Reconstitution of hepatocyte IGF1 in male aHepGHRkd lowered GH and normalized insulin, whole body lipid utilization and WAT mass. However, IGF1 reconstitution did not reduce steatosis or eliminate liver injury. RNAseq analysis showed IGF1 reconstitution did not impact aHepGHRkd-induced changes in liver gene expression, despite changes in systemic metabolism. These results demonstrate the impact of aHepGHRkd is sexually dimorphic and the steatosis and liver injury observed in male aHepGHRkd mice is autonomous of IGF1, suggesting GH acts directly on the adult hepatocyte to control NAFLD progression.

Supplementary Materials

 

  • Collapse
  • Expand
  • Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Čech M, Chilton J, Clements D, Coraor N & Grüning BA et al. 2018 The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Research 46 W537W5 44. (https://doi.org/10.1093/nar/gky379)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Alkhouri N, Lawitz E, Noureddin M, DeFronzo R & Shulman GI 2020 GS-0976 (Firsocostat): an investigational liver-directed acetyl-CoA carboxylase (ACC) inhibitor for the treatment of non-alcoholic steatohepatitis (NASH). Expert Opinion on Investigational Drugs 29 1351 41. (https://doi.org/10.1080/13543784.2020.1668374)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Anders S & Huber W 2010 Differential expression analysis for sequence count data. Genome Biology 11 R106. (https://doi.org/10.1186/gb-2010-11-10-r106)

  • Arturi F, Succurro E, Procopio C, Pedace E, Mannino GC, Lugarà M, Procopio T, Andreozzi F, Sciacqua A & Hribal ML et al. 2011 Nonalcoholic fatty liver disease is associated with low circulating levels of insulin-like growth factor-I. Journal of Clinical Endocrinology and Metabolism 96 E1640E164 4. (https://doi.org/10.1210/jc.2011-1227)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Björnström L & Sjöberg M 2002 Signal transducers and activators of transcription as downstream targets of nongenomic estrogen receptor actions. Molecular Endocrinology 16 220222 14. (https://doi.org/10.1210/me.2002-0072)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cianfarani S, Inzaghi E, Alisi A, Germani D, Puglianiello A & Nobili V 2014 Insulin-like growth factor-I and -II levels are associated with the progression of nonalcoholic fatty liver disease in obese children. Journal of Pediatrics 165 929 8. (https://doi.org/10.1016/j.jpeds.2014.01.052)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clemmons DR 2012 Metabolic actions of insulin-like growth factor-I in normal physiology and diabetes. Endocrinology and Metabolism Clinics of North America 41 42544 3, viiviii. (https://doi.org/10.1016/j.ecl.2012.04.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clodfelter KH, Holloway MG, Hodor P, Park SH, Ray WJ & Waxman DJ 2006 Sex-dependent liver gene expression is extensive and largely dependent upon signal transducer and activator of transcription 5b (STAT5b): STAT5b-dependent activation of male genes and repression of female genes revealed by microarray analysis. Molecular Endocrinology 20 133313 51. (https://doi.org/10.1210/me.2005-0489)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Corbit KC, Camporez JPG, Edmunds LR, Tran JL, Vera NB, Erion DM, Deo RC, Perry RJ, Shulman GI & Jurczak MJ et al. 2018. Adipocyte JAK2 regulates hepatic insulin sensitivity independently of body composition, liver lipid content, and hepatic insulin signaling. Diabetes 67 2082 2 1. (https://doi.org/10.2337/db17-0524)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Corbit KC, Wilson CG, Lowe D, Tran JL, Vera NB, Clasquin M, Mattis AN & Weiss EJ 2019 Adipocyte JAK2 mediates spontaneous metabolic liver disease and hepatocellular carcinoma. JCI Insight 5 e131310. (https://doi.org/10.1172/jci.insight.131310)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cordoba-Chacon J 2020 Loss of hepatocyte-specific PPARgamma expression ameliorates early events of steatohepatitis in mice fed the methionine and choline-deficient diet. PPAR Research 2020 9735083. (https://doi.org/10.1155/2020/9735083)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cordoba-Chacon J, Gahete MD, Pokala NK, Geldermann D, Alba M, Salvatori R, Luque RM & Kineman RD 2014 Long- but not short-term adult-onset, isolated GH deficiency in male mice leads to deterioration of beta-cell function, which cannot be accounted for by changes in beta-cell mass. Endocrinology 155 7267 35. (https://doi.org/10.1210/en.2013-1825)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cordoba-Chacon J, Majumdar N, List EO, Diaz-Ruiz A, Frank SJ, Manzano A, Bartrons R, Puchowicz M, Kopchick JJ & Kineman RD 2015 Growth hormone inhibits hepatic de novo lipogenesis in adult mice. Diabetes 64 30933 103. (https://doi.org/10.2337/db15-0370)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cordoba-Chacon J, Sarmento-Cabral A, Del Rio-Moreno M, Diaz-Ruiz A, Subbaiah PV & Kineman RD 2018 Adult-onset hepatocyte GH resistance promotes NASH in male mice, without severe systemic metabolic dysfunction. Endocrinology 159 376137 74. (https://doi.org/10.1210/en.2018-00669)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cui Y, Hosui A, Sun R, Shen K, Gavrilova O, Chen W, Cam MC, Gao B, Robinson GW & Hennighausen L 2007 Loss of signal transducer and activator of transcription 5 leads to hepatosteatosis and impaired liver regeneration. Hepatology 46 5045 13. (https://doi.org/10.1002/hep.21713)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dehkhoda F, Lee CMM, Medina J & Brooks AJ 2018 The growth hormone receptor: mechanism of receptor activation, cell signaling, and physiological aspects. Frontiers in Endocrinology 9 35. (https://doi.org/10.3389/fendo.2018.00035)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dichtel LE, Corey KE, Misdraji J, Bredella MA, Schorr M, Osganian SA, Young BJ, Sung JC & Miller KK 2017 The association between IGF-1 levels and the histologic severity of nonalcoholic fatty liver disease. Clinical and Translational Gastroenterology 8 e217. (https://doi.org/10.1038/ctg.2016.72)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M & Gingeras TR 2013 STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29 1521. (https://doi.org/10.1093/bioinformatics/bts635)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fan Y, Menon RK, Cohen P, Hwang D, Clemens T, DiGirolamo DJ, Kopchick JJ, Le Roith D, Trucco M & Sperling MA 2009 Liver-specific deletion of the growth hormone receptor reveals essential role of growth hormone signaling in hepatic lipid metabolism. Journal of Biological Chemistry 284 19937199 44. (https://doi.org/10.1074/jbc.M109.014308)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fan Y, Fang X, Tajima A, Geng X, Ranganathan S, Dong H, Trucco M & Sperling MA 2014 Evolution of hepatic steatosis to fibrosis and adenoma formation in liver-specific growth hormone receptor knockout mice. Frontiers in Endocrinology 5 218. (https://doi.org/10.3389/fendo.2014.00218)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Feigerlova E, Hwa V, Derr MA & Rosenfeld RG 2013 Current issues on molecular diagnosis of GH signaling defects. Endocrine Development 24 1181 27. (https://doi.org/10.1159/000342586)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fusco A, Miele L, D'Uonnolo A, Forgione A, Riccardi L, Cefalo C, Barini A, Bianchi A, Giampietro A & Cimino V et al. 2012 Nonalcoholic fatty liver disease is associated with increased GHBP and reduced GH/IGF-I levels. Clinical Endocrinology 77 53153 6. (https://doi.org/10.1111/j.1365-2265.2011.04291.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gahete MD, Cordoba-Chacon J, Anadumaka CV, Lin Q, Bruning JC, Kahn CR, Luque RM & Kineman RD 2011 Elevated GH/IGF-I, due to somatotrope-specific loss of both IGF-I and insulin receptors, alters glucose homeostasis and insulin sensitivity in a diet-dependent manner. Endocrinology 152 482548 37. (https://doi.org/10.1210/en.2011-1447)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gahete MD, Cordoba-Chacon J, Lin Q, Bruning JC, Kahn CR, Castano JP, Christian H, Luque RM & Kineman RD 2013 Insulin and IGF-I inhibit GH synthesis and release in vitro and in vivo by separate mechanisms. Endocrinology 154 24102 42 0. (https://doi.org/10.1210/en.2013-1261)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gao YS, Qian MY, Wei QQ, Duan XB, Wang SL, Hu HY, Liu J, Pan CY, Zhang SQ & Qi LW et al. 2020 WZ66, a novel acetyl-CoA carboxylase inhibitor, alleviates nonalcoholic steatohepatitis (NASH) in mice. Acta Pharmacologica Sinica 41 3363 47. (https://doi.org/10.1038/s41401-019-0310-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gapp B, Jourdain M, Bringer P, Kueng B, Weber D, Osmont A, Zurbruegg S, Knehr J, Falchetto R & Roma G et al. 2020 Farnesoid X receptor agonism, acetyl-coenzyme A carboxylase inhibition, and back translation of clinically observed endpoints of de novo lipogenesis in a murine NASH model. Hepatology Communications 4 1091 25. (https://doi.org/10.1002/hep4.1443)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hazlehurst JM & Tomlinson JW 2013 Non-alcoholic fatty liver disease in common endocrine disorders. European Journal of Endocrinology 169 R27R 37. (https://doi.org/10.1530/EJE-13-0296)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Horton JD, Goldstein JL & Brown MS 2002 SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. Journal of Clinical Investigation 109 112511 31. (https://doi.org/10.1172/JCI15593)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hribal ML, Procopio T, Petta S, Sciacqua A, Grimaudo S, Pipitone RM, Perticone F & Sesti G 2013 Insulin-like growth factor-I, inflammatory proteins, and fibrosis in subjects with nonalcoholic fatty liver disease. Journal of Clinical Endocrinology and Metabolism 98 E304E30 8. (https://doi.org/10.1210/jc.2012-3290)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ichikawa T, Nakao K, Hamasaki K, Furukawa R, Tsuruta S, Ueda Y, Taura N, Shibata H, Fujimoto M & Toriyama K et al. 2007 Role of growth hormone, insulin-like growth factor 1 and insulin-like growth factor-binding protein 3 in development of non-alcoholic fatty liver disease. Hepatology International 1 2872 94. (https://doi.org/10.1007/s12072-007-9007-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kineman RD, Majumdar N, Subbaiah PV & Cordoba-Chacon J 2016 Hepatic PPARγ is not essential for the rapid development of steatosis following loss of hepatic GH signaling, in adult male mice. Endocrinology 157 172817 35. (https://doi.org/10.1210/en.2015-2077)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lambert JE, Ramos-Roman MA, Browning JD & Parks EJ 2014 Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146 7267 35. (https://doi.org/10.1053/j.gastro.2013.11.049)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • LeRoith D 2008 Clinical relevance of systemic and local IGF-I: lessons from animal models. Pediatric Endocrinology Reviews 5 (Supplement 2) 7397 43.

  • List EO, Berryman DE, Funk K, Gosney ES, Jara A, Kelder B, Wang X, Kutz L, Troike K & Lozier N et al. 2013 The role of GH in adipose tissue: lessons from adipose-specific GH receptor gene-disrupted mice. Molecular Endocrinology 27 5245 35. (https://doi.org/10.1210/me.2012-1330)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • List EO, Berryman DE, Funk K, Jara A, Kelder B, Wang F, Stout MB, Zhi X, Sun L & White TA et al. 2014 Liver-specific GH receptor gene-disrupted (LiGHRKO) mice have decreased endocrine IGF-I, increased local IGF-I, and altered body size, body composition, and adipokine profiles. Endocrinology 155 17931 805. (https://doi.org/10.1210/en.2013-2086)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • List EO, Berryman DE, Jensen EA, Kulkarni P, McKenna S & Kopchick JJ 2019 New insights of growth hormone (GH) actions from tissue-specific GH receptor knockouts in mice. Archives of Endocrinology and Metabolism 63 5575 67. (https://doi.org/10.20945/2359-3997000000185)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu Z, Cordoba-Chacon J, Kineman RD, Cronstein BN, Muzumdar R, Gong Z, Werner H & Yakar S 2016 Growth hormone control of hepatic lipid metabolism. Diabetes 65 35983 609. (https://doi.org/10.2337/db16-0649)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu Z, Han T, Fishman S, Butler J, Zimmermann T, Tremblay F, Harbison C, Agrawal N, Kopchick JJ & Schaffler MB et al. 2017 Ablation of hepatic production of the acid-labile subunit in bovine-GH transgenic mice: effects on organ and skeletal growth. Endocrinology 158 255625 71. (https://doi.org/10.1210/en.2016-1952)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu Z, Han T, Werner H, Rosen CJ, Schaffler MB & Yakar S 2018 Reduced serum IGF-1 associated with hepatic osteodystrophy is a main determinant of low cortical but not trabecular bone mass. Journal of Bone and Mineral Research 33 1231 36. (https://doi.org/10.1002/jbmr.3290)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lonardo A, Nascimbeni F, Ballestri S, Fairweather D, Win S, Than TA, Abdelmalek MF & Suzuki A 2019 Sex differences in nonalcoholic fatty liver disease: state of the art and identification of research gaps. Hepatology 70 145714 69. (https://doi.org/10.1002/hep.30626)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Luque RM, Lin Q, Cordoba-Chacon J, Subbaiah PV, Buch T, Waisman A, Vankelecom H & Kineman RD 2011 Metabolic impact of adult-onset, isolated, growth hormone deficiency (AOiGHD) due to destruction of pituitary somatotropes. PLoS ONE 6 e15767. (https://doi.org/10.1371/journal.pone.0015767)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mauvais-Jarvis F 2017 Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity. Ed Mauvais-Jarvis FSpringer International Publishing.

  • Moller N & Jorgensen JO 2009 Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocrine Reviews 30 1521 77. (https://doi.org/10.1210/er.2008-0027)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mortazavi A, Williams BA, McCue K, Schaeffer L & Wold B 2008 Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5 62162 8. (https://doi.org/10.1038/nmeth.1226)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nordstrom SM, Tran JL, Sos BC, Wagner KU & Weiss EJ 2013 Disruption of JAK2 in adipocytes impairs lipolysis and improves fatty liver in mice with elevated GH. Molecular Endocrinology 27 133313 42. (https://doi.org/10.1210/me.2013-1110)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oshida K, Waxman DJ & Corton JC 2016 Chemical and hormonal effects on STAT5b-dependent sexual dimorphism of the liver transcriptome. PLoS ONE 11 e0150284. (https://doi.org/10.1371/journal.pone.0150284)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ross TT, Crowley C, Kelly KL, Rinaldi A, Beebe DA, Lech MP, Martinez RV, Carvajal-Gonzalez S, Boucher M & Hirenallur-Shanthappa D et al. 2020 Acetyl-CoA carboxylase inhibition improves multiple dimensions of NASH pathogenesis in model systems. Cellular and Molecular Gastroenterology and Hepatology 10 829851. (https://doi.org/10.1016/j.jcmgh.2020.06.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rotwein P 2012 Mapping the growth hormone–Stat5b–IGF-I transcriptional circuit. Trends in Endocrinology and Metabolism 23 1861 93. (https://doi.org/10.1016/j.tem.2012.01.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Runchey SS, Boyko EJ, Ioannou GN & Utzschneider KM 2014 Relationship between serum circulating insulin-like growth factor-1 and liver fat in the United States. Journal of Gastroenterology and Hepatology 29 5895 96. (https://doi.org/10.1111/jgh.12437)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sirbu A, Gologan S, Arbanas T, Copaescu C, Martin S, Albu A, Barbu C, Pirvulescu I & Fica S 2013 Adiponectin, body mass index and hepatic steatosis are independently associated with IGF-I status in obese non-diabetic women. Growth Hormone and IGF Research 23 27. (https://doi.org/10.1016/j.ghir.2012.10.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Smith GI, Shankaran M, Yoshino M, Schweitzer GG, Chondronikola M, Beals JW, Okunade AL, Patterson BW, Nyangau E & Field T et al. 2020 Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. Journal of Clinical Investigation 130 145314 60. (https://doi.org/10.1172/JCI134165)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sos BC, Harris C, Nordstrom SM, Tran JL, Balazs M, Caplazi P, Febbraio M, Applegate MA, Wagner KU & Weiss EJ 2011 Abrogation of growth hormone secretion rescues fatty liver in mice with hepatocyte-specific deletion of JAK2. Journal of Clinical Investigation 121 141214 23. (https://doi.org/10.1172/JCI42894)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Spadaro O, Camell CD, Bosurgi L, Nguyen KY, Youm YH, Rothlin CV & Dixit VD 2017 IGF1 shapes macrophage activation in response to immunometabolic challenge. Cell Reports 19 2252 34. (https://doi.org/10.1016/j.celrep.2017.03.046)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sumida Y, Yonei Y, Tanaka S, Mori K, Kanemasa K, Imai S, Taketani H, Hara T, Seko Y & Ishiba H et al. 2015 Lower levels of insulin-like growth factor-1 standard deviation score are associated with histological severity of non-alcoholic fatty liver disease. Hepatology Research 45 7717 81. (https://doi.org/10.1111/hepr.12408)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Syed-Abdul MM, Parks EJ, Gaballah AH, Bingham K, Hammoud GM, Kemble G, Buckley D, McCulloch W & Manrique-Acevedo C 2020 Fatty acid synthase inhibitor TVB-2640 reduces hepatic de novo lipogenesis in males with metabolic abnormalities. Hepatology 72 1031 1 8. (https://doi.org/10.1002/hep.31000)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Takahashi Y 2017 The role of growth hormone and insulin-like growth factor-I in the liver. International Journal of Molecular Sciences 18 1447. (https://doi.org/10.3390/ijms18071447)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Venken K, Schuit F, Van Lommel L, Tsukamoto K, Kopchick JJ, Coschigano K, Ohlsson C, Moverare S, Boonen S & Bouillon R et al. 2005 Growth without growth hormone receptor: estradiol is a major growth hormone-independent regulator of hepatic IGF-I synthesis. Journal of Bone and Mineral Research 20 213821 49. (https://doi.org/10.1359/JBMR.050811)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vijayakumar A, Wu Y, Buffin NJ, Li X, Sun H, Gordon RE, Yakar S & LeRoith D 2012 Skeletal muscle growth hormone receptor signaling regulates basal, but not fasting-induced, lipid oxidation. PLoS ONE 7 e44777. (https://doi.org/10.1371/journal.pone.0044777)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Völzke H, Nauck M, Rettig R, Dörr M, Higham C, Brabant G & Wallaschofski H 2009 Association between hepatic steatosis and serum IGF1 and IGFBP-3 levels in a population-based sample. European Journal of Endocrinology 161 7057 13. (https://doi.org/10.1530/EJE-09-0374)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang Y, Viscarra J, Kim SJ & Sul HS 2015 Transcriptional regulation of hepatic lipogenesis. Nature Reviews. Molecular Cell Biology 16 6786 89. (https://doi.org/10.1038/nrm4074)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Waraky A, Aleem E & Larsson O 2016 Downregulation of IGF-1 receptor occurs after hepatic linage commitment during hepatocyte differentiation from human embryonic stem cells. Biochemical and Biophysical Research Communications 478 157515 81. (https://doi.org/10.1016/j.bbrc.2016.08.157)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Waters MJ & Brooks AJ 2015 JAK2 activation by growth hormone and other cytokines. Biochemical Journal 466 111. (https://doi.org/10.1042/BJ20141293)

  • Wilson CG, Tran JL, Erion DM, Vera NB, Febbraio M & Weiss EJ 2016 Hepatocyte-specific disruption of CD36 attenuates fatty liver and improves insulin sensitivity in HFD-fed mice. Endocrinology 157 5705 85. (https://doi.org/10.1210/en.2015-1866)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wolf Greenstein A, Majumdar N, Yang P, Subbaiah PV, Kineman RD & Cordoba-Chacon J 2017 Hepatocyte-specific, PPARgamma-regulated mechanisms to promote steatosis in adult mice. Journal of Endocrinology 23 2 1071 21. (https://doi.org/10.1530/JOE-16-0447)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu Y, Sun H, Yakar S & LeRoith D 2009 Elevated levels of insulin-like growth factor (IGF)-I in serum rescue the severe growth retardation of IGF-I null mice. Endocrinology 150 43954 4 03. (https://doi.org/10.1210/en.2009-0272)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu Y, Sun H, Basta-Pljakic J, Cardoso L, Kennedy OD, Jasper H, Domene H, Karabatas L, Guida C & Schaffler MB et al. 2013 Serum IGF-1 is insufficient to restore skeletal size in the total absence of the growth hormone receptor. Journal of Bone and Mineral Research 28 157515 86. (https://doi.org/10.1002/jbmr.1920)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu L, Xu C, Yu C, Miao M, Zhang X, Zhu Z, Ding X & Li Y 2012 Association between serum growth hormone levels and nonalcoholic fatty liver disease: a cross-sectional study. PLoS ONE 7 e44136. (https://doi.org/10.1371/journal.pone.0044136)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu JH, Zhu BM, Riedlinger G, Kang K & Hennighausen L 2012 The liver-specific tumor suppressor STAT5 controls expression of the reactive oxygen species-generating enzyme NOX4 and the proapoptotic proteins PUMA and BIM in mice. Hepatology 56 237523 86. (https://doi.org/10.1002/hep.25900)

    • PubMed
    • Search Google Scholar
    • Export Citation